These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 24972018)
1. Photothermal control of the gelation properties of nickel bis(dithiolene) metallogelators under near-infrared irradiation. Mebrouk K; Debnath S; Fourmigué M; Camerel F Langmuir; 2014 Jul; 30(28):8592-7. PubMed ID: 24972018 [TBL] [Abstract][Full Text] [Related]
2. Tunable NIR Absorption Property of a Dithiolene Nickel Complex: A Promising NIR-II Absorption Material for Photothermal Therapy. Chen K; Fang W; Zhang Q; Jiang X; Chen Y; Xu W; Shen Q; Sun P; Huang W ACS Appl Bio Mater; 2021 May; 4(5):4406-4412. PubMed ID: 35006852 [TBL] [Abstract][Full Text] [Related]
4. Fine and Clean Photothermally Controlled NIR Drug Delivery from Biocompatible Nickel-bis(dithiolene)-Containing Liposomes. Mebrouk K; Ciancone M; Vives T; Cammas-Marion S; Benvegnu T; Le Goff-Gaillard C; Arlot-Bonnemains Y; Fourmigué M; Camerel F ChemMedChem; 2017 Nov; 12(21):1753-1758. PubMed ID: 28902984 [TBL] [Abstract][Full Text] [Related]
5. Liposomes Containing Nickel-Bis(dithiolene) Complexes for Photothermal Theranostics. Ciancone M; Bellec N; Cammas-Marion S; Dolet A; Vray D; Varray F; Le Goff-Gaillard C; Le Goff X; Arlot-Bonnemains Y; Camerel F Langmuir; 2019 Nov; 35(47):15121-15130. PubMed ID: 31682444 [TBL] [Abstract][Full Text] [Related]
6. Investigations of the Photothermal Properties of a Series of Molecular Gold-bis(dithiolene) Complexes Absorbing in the NIR-III Region. Pluta JB; Guechaichia R; Vacher A; Bellec N; Cammas-Marion S; Camerel F Chemistry; 2023 Sep; 29(54):e202301789. PubMed ID: 37417949 [TBL] [Abstract][Full Text] [Related]
7. NIR photothermal therapy using polyaniline nanoparticles. Zhou J; Lu Z; Zhu X; Wang X; Liao Y; Ma Z; Li F Biomaterials; 2013 Dec; 34(37):9584-92. PubMed ID: 24044996 [TBL] [Abstract][Full Text] [Related]
8. Biocompatible nanoparticles containing hydrophobic nickel-bis(dithiolene) complexes for NIR-mediated doxorubicin release and photothermal therapy. Ciancone M; Mebrouk K; Bellec N; Le Goff-Gaillard C; Arlot-Bonnemains Y; Benvegnu T; Fourmigué M; Camerel F; Cammas-Marion S J Mater Chem B; 2018 Mar; 6(12):1744-1753. PubMed ID: 32254246 [TBL] [Abstract][Full Text] [Related]
9. LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells. Lai BH; Chen DH Acta Biomater; 2013 Jul; 9(7):7556-63. PubMed ID: 23542555 [TBL] [Abstract][Full Text] [Related]
10. Efficient transfer of either one or two dithiolene ligands from nickel to ruthenium: synthesis and crystal structures of [Ru(SCR=CPhS)(2)(PPh(3))] and [RuCl(2)(SCR=CPhS)(PPh(3))(2)] (R = Ph, H). Adams H; Coffey AM; Morris MJ; Morris SA Inorg Chem; 2009 Dec; 48(24):11945-53. PubMed ID: 19921845 [TBL] [Abstract][Full Text] [Related]
11. Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. Meng Z; Chao Y; Zhou X; Liang C; Liu J; Zhang R; Cheng L; Yang K; Pan W; Zhu M; Liu Z ACS Nano; 2018 Sep; 12(9):9412-9422. PubMed ID: 30148960 [TBL] [Abstract][Full Text] [Related]
12. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chen M; Fang X; Tang S; Zheng N Chem Commun (Camb); 2012 Sep; 48(71):8934-6. PubMed ID: 22847451 [TBL] [Abstract][Full Text] [Related]
13. Integrating Tetrathiafulvalene and Nickel-Bis(dithiolene) Units into Donor-Acceptor Covalent Organic Frameworks for Stable and Efficient Photothermal Conversion. Li YY; Wei T; Liu C; Zhang Z; Wu LF; Ding M; Yuan S; Zhu J; Zuo JL Chemistry; 2023 Jun; 29(34):e202301048. PubMed ID: 37022345 [TBL] [Abstract][Full Text] [Related]
14. Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for near-infrared photothermal ablation of bacteria. Lai BH; Chen DH Acta Biomater; 2013 Jul; 9(7):7573-9. PubMed ID: 23535232 [TBL] [Abstract][Full Text] [Related]
15. Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Li B; Wang Q; Zou R; Liu X; Xu K; Li W; Hu J Nanoscale; 2014 Mar; 6(6):3274-82. PubMed ID: 24509646 [TBL] [Abstract][Full Text] [Related]
16. Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells. Yuwen L; Zhou J; Zhang Y; Zhang Q; Shan J; Luo Z; Weng L; Teng Z; Wang L Nanoscale; 2016 Feb; 8(5):2720-6. PubMed ID: 26758473 [TBL] [Abstract][Full Text] [Related]
17. Cu₂-xSe@mSiO₂-PEG core-shell nanoparticles: a low-toxic and efficient difunctional nanoplatform for chemo-photothermal therapy under near infrared light radiation with a safe power density. Liu X; Wang Q; Li C; Zou R; Li B; Song G; Xu K; Zheng Y; Hu J Nanoscale; 2014 Apr; 6(8):4361-70. PubMed ID: 24626779 [TBL] [Abstract][Full Text] [Related]
18. Transdermal gelation of methacrylated macromers with near-infrared light and gold nanorods. Gramlich WM; Holloway JL; Rai R; Burdick JA Nanotechnology; 2014 Jan; 25(1):014004. PubMed ID: 24334436 [TBL] [Abstract][Full Text] [Related]
19. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Zhou Z; Sun Y; Shen J; Wei J; Yu C; Kong B; Liu W; Yang H; Yang S; Wang W Biomaterials; 2014 Aug; 35(26):7470-8. PubMed ID: 24881997 [TBL] [Abstract][Full Text] [Related]
20. π-Conjugated nickel bis(dithiolene) complex nanosheet. Kambe T; Sakamoto R; Hoshiko K; Takada K; Miyachi M; Ryu JH; Sasaki S; Kim J; Nakazato K; Takata M; Nishihara H J Am Chem Soc; 2013 Feb; 135(7):2462-5. PubMed ID: 23360513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]