BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24972094)

  • 41. Dual modulation steering electron reducibility and transfer of bismuth molybdate nanoparticle to boost carbon dioxide photoreduction to carbon monoxide.
    Liu Z; Ji M; Zhao J; Zhang Y; Sun X; Shao Y; Li H; Yin S; Xia J
    J Colloid Interface Sci; 2022 Mar; 610():518-526. PubMed ID: 34863551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states.
    Xu M; He G; Li Z; He F; Gao F; Su Y; Zhang L; Yang Z; Zhang Y
    Nanoscale; 2014 Sep; 6(17):10307-15. PubMed ID: 25069763
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electron transfer between carbon dots and tetranuclear Dawson-derived sandwich polyanions.
    Madonia A; Sciortino A; Martin-Sabi M; Cannas M; Ammar S; Messina F; Schaming D
    Phys Chem Chem Phys; 2022 Jul; 24(29):17654-17664. PubMed ID: 35834214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescent carbon nanomaterials: "quantum dots" or nanoclusters?
    Dekaliuk MO; Viagin O; Malyukin YV; Demchenko AP
    Phys Chem Chem Phys; 2014 Aug; 16(30):16075-84. PubMed ID: 24965696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Applications of Carbon Dots for the Photocatalytic and Electrocatalytic Reduction of CO
    Domingo-Tafalla B; Martínez-Ferrero E; Franco F; Palomares-Gil E
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. pH-sensitive ligand for luminescent quantum dots.
    Tomasulo M; Yildiz I; Kaanumalle SL; Raymo FM
    Langmuir; 2006 Nov; 22(24):10284-90. PubMed ID: 17107034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis.
    Dong Y; Choi J; Jeong HK; Son DH
    J Am Chem Soc; 2015 Apr; 137(16):5549-54. PubMed ID: 25860231
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioinspired photoelectric conversion system based on carbon-quantum-dot-doped dye-semiconductor complex.
    Ma Z; Zhang YL; Wang L; Ming H; Li H; Zhang X; Wang F; Liu Y; Kang Z; Lee ST
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5080-4. PubMed ID: 23668995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution.
    Lee S; Lee Y; Kim DH; Moon JH
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12526-32. PubMed ID: 24266769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution.
    Wang J; Lim YF; Wei Ho G
    Nanoscale; 2014 Aug; 6(16):9673-80. PubMed ID: 24991751
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles.
    Huang D; Niu C; Ruan M; Wang X; Zeng G; Deng C
    Environ Sci Technol; 2013 May; 47(9):4392-8. PubMed ID: 23517334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solvothermal synthesis of Ce-doped tungsten oxide nanostructures as visible-light-driven photocatalysts.
    Chang X; Sun S; Zhou Y; Dong L; Yin Y
    Nanotechnology; 2011 Jul; 22(26):265603. PubMed ID: 21576793
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles.
    Hyun BR; Zhong YW; Bartnik AC; Sun L; Abruña HD; Wise FW; Goodreau JD; Matthews JR; Leslie TM; Borrelli NF
    ACS Nano; 2008 Nov; 2(11):2206-12. PubMed ID: 19206384
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon Dots: Zero-Dimensional Carbon Allotrope with Unique Photoinduced Redox Characteristics.
    Liang W; Bunker CE; Sun YP
    ACS Omega; 2020 Jan; 5(2):965-971. PubMed ID: 31984251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visible light-sensitive ZnGe oxynitride catalysts for the decomposition of organic pollutants in water.
    Huang J; Cui Y; Wang X
    Environ Sci Technol; 2010 May; 44(9):3500-4. PubMed ID: 20387874
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Colloidal graphene quantum dots with well-defined structures.
    Yan X; Li B; Li LS
    Acc Chem Res; 2013 Oct; 46(10):2254-62. PubMed ID: 23150896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A simple, scalable approach for combining carbon dots with hexagonal nanoplates of nickel-based compounds for efficient photocatalytic reduction.
    Song Z; Chang Q; Trinchi A; Li N; Wang H; Yang J; Hu S
    Dalton Trans; 2018 Sep; 47(36):12694-12701. PubMed ID: 30140823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator.
    Abe R; Shinmei K; Koumura N; Hara K; Ohtani B
    J Am Chem Soc; 2013 Nov; 135(45):16872-84. PubMed ID: 24128384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of Ag and AgI quantum dots in AOT-stabilized water-in-CO2 microemulsions.
    Liu J; Raveendran P; Shervani Z; Ikushima Y; Hakuta Y
    Chemistry; 2005 Mar; 11(6):1854-60. PubMed ID: 15685712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.