These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24972096)

  • 41. [Metabolic pattern of pig hindgut bacteria on aromatic amino acids by an in vitro fermentation method].
    Ma M; He X; Zhu W
    Wei Sheng Wu Xue Bao; 2016 Nov; 56(11):1786-93. PubMed ID: 29741842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of live yeast culture supplementation on apparent digestibility and rate of passage in horses fed a high-fiber or high-starch diet.
    Jouany JP; Gobert J; Medina B; Bertin G; Julliand V
    J Anim Sci; 2008 Feb; 86(2):339-47. PubMed ID: 17911241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of the gut microbiota and the influence of diet.
    Rothe M; Blaut M
    Benef Microbes; 2013 Mar; 4(1):31-7. PubMed ID: 23257016
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fiber-related digestive processes in three different breeds of pigs.
    von Heimendahl E; Breves G; Abel HJ
    J Anim Sci; 2010 Mar; 88(3):972-81. PubMed ID: 19933429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative in vitro fermentation activity in the canine distal gastrointestinal tract and fermentation kinetics of fiber sources.
    Bosch G; Pellikaan WF; Rutten PG; van der Poel AF; Verstegen MW; Hendriks WH
    J Anim Sci; 2008 Nov; 86(11):2979-89. PubMed ID: 18599660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana buffalo (Bubalus bubalis) using 16S pyrotags.
    Pitta DW; Kumar S; Veiccharelli B; Parmar N; Reddy B; Joshi CG
    Anaerobe; 2014 Feb; 25():31-41. PubMed ID: 24315806
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs.
    Zijlstra RT; Jha R; Woodward AD; Fouhse J; van Kempen TA
    J Anim Sci; 2012 Dec; 90 Suppl 4():49-58. PubMed ID: 23365281
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The gut bacteria associated with Camponotus japonicus Mayr with culture-dependent and DGGE methods.
    Li X; Nan X; Wei C; He H
    Curr Microbiol; 2012 Nov; 65(5):610-6. PubMed ID: 22878556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distinct commensal bacteria associated with ingesta and mucosal epithelium in the gastrointestinal tracts of calves and chickens.
    Malmuthuge N; Li M; Chen Y; Fries P; Griebel PJ; Baurhoo B; Zhao X; Guan LL
    FEMS Microbiol Ecol; 2012 Feb; 79(2):337-47. PubMed ID: 22092450
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative diversity analysis of gut microbiota in two different human flora-associated mouse strains.
    Zhang X; Zeng B; Liu Z; Liao Z; Li W; Wei H; Fang X
    Curr Microbiol; 2014 Sep; 69(3):365-73. PubMed ID: 24807625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro communities derived from oral and gut microbial floras inhibit the growth of bacteria of foreign origins.
    He X; Tian Y; Guo L; Ano T; Lux R; Zusman DR; Shi W
    Microb Ecol; 2010 Oct; 60(3):665-76. PubMed ID: 20625712
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolution of commensal bacteria in the intestinal tract of mice.
    Sousa A; Frazão N; Ramiro RS; Gordo I
    Curr Opin Microbiol; 2017 Aug; 38():114-121. PubMed ID: 28591676
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dietary Fiber Influences Bacterial Community Assembly Processes in the Gut Microbiota of Durco × Bamei Crossbred Pig.
    Tang X; Zhang L; Fan C; Wang L; Fu H; Ren S; Shen W; Jia S; Wu G; Zhang Y
    Front Microbiol; 2021; 12():688554. PubMed ID: 34956107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microbial fermentation in certain mammals.
    HUNGATE RE; PHILLIPS GD; McGREGOR A; HUNGATE DP; BUECHNER HK
    Science; 1959 Oct; 130(3383):1192-4. PubMed ID: 14405398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation and characterization of anaerobic bacteria with fiber degradation potential from faeces of Boselaphus tragocamelus grazing on semi arid Indian conditions.
    Kumawat PK; Sahoo A; Sarkar S; Kumar S
    Arch Microbiol; 2021 Oct; 203(8):5105-5116. PubMed ID: 34304303
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbiology of the gut of the kola nut weevil, Balanogastris kolae.
    Femi-Ola TO; Babalola AG
    J Insect Sci; 2012; 12():84. PubMed ID: 23421598
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ability of pH-Selected Mixed Ruminal Microbial Populations to Digest Fiber at Various pHs.
    Slyter LL
    Appl Environ Microbiol; 1986 Aug; 52(2):390-1. PubMed ID: 16347142
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacteria Associated with the Gut Tract of Larval Stages of the Aquatic Cranefly Tipula abdominalis (Diptera; Tipulidae).
    Klug MJ; Kotarski S
    Appl Environ Microbiol; 1980 Aug; 40(2):408-16. PubMed ID: 16345618
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immunofluorescence assay for effects on field abundance of a naturally occurring pseudomonad during passage through the gut of a marine deposit feeder, Abarenicola pacifica.
    Plante C; Jumars P
    Microb Ecol; 1993 Nov; 26(3):247-66. PubMed ID: 24190094
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preventing colitis through alteration of the intestinal biota.
    Peek RM
    Gastroenterology; 2004 Jan; 126(1):353-5; discussion 355. PubMed ID: 14699516
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.