BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 24972143)

  • 21. A Novel Label-Free microRNA-155 Detection on the Basis of Fluorescent Silver Nanoclusters.
    Hosseini M; Akbari A; Ganjali MR; Dadmehr M; Rezayan AH
    J Fluoresc; 2015 Jul; 25(4):925-9. PubMed ID: 25953605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.
    Miao X; Cheng Z; Ma H; Li Z; Xue N; Wang P
    Anal Chem; 2018 Jan; 90(2):1098-1103. PubMed ID: 29198110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorometric assay of iron(II) lactate hydrate and ammonium ferric citrate in food and medicine based on poly(sodium-p-styrenesulfonate)-enhanced Ag nanoclusters.
    Hu Y; Jia Y; Liao Y; Jiang X; Cheng Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117519. PubMed ID: 31521986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of p53 Gene Mutation (Single-Base Mismatch) Using a Fluorescent Silver Nanoclusters.
    Hosseini M; Mohammadi S; Borghei YS; Ganjali MR
    J Fluoresc; 2017 Jul; 27(4):1443-1448. PubMed ID: 28405933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters.
    Zhang N; Qu F; Luo HQ; Li NB
    Biosens Bioelectron; 2013 Apr; 42():214-8. PubMed ID: 23208088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly sensitive resonance light scattering bioassay for heparin based on polyethyleneimine-capped Ag nanoclusters.
    Tang Y; Zhang Y; Su Y; Lv Y
    Talanta; 2013 Oct; 115():830-6. PubMed ID: 24054670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Base amount-dependent fluorescence enhancement for the assay of vascular endothelial growth factor 165 in human serum using hairpin DNA-silver nanoclusters and oxidized carbon nanoparticles.
    Ji J; Xu X; Chen P; Wu J; Jin Y; Zhang L; Du S
    Mikrochim Acta; 2020 Oct; 187(11):629. PubMed ID: 33123813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aquamarine blue emitting silver nanoparticles as fluorescent sensor for melamine detection.
    Li Z; Li Y; Li L; Wang T
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():51-59. PubMed ID: 30927571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of a dual-signal readout platform for effective glutathione S-transferase sensing based on polyethyleneimine-capped silver nanoclusters and cobalt-manganese oxide nanosheets with oxidase-mimicking activity.
    Huo Z; Lv Y; Wang N; Zhou C; Su X
    Mikrochim Acta; 2024 Apr; 191(5):282. PubMed ID: 38652326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters.
    Yuan Z; Cai N; Du Y; He Y; Yeung ES
    Anal Chem; 2014 Jan; 86(1):419-26. PubMed ID: 24274096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new fluorescence method for detection of famotidine based on polyethyleneimine-templated Ag nanoclusters.
    Shen YM; Tian R; Ma HY; Sun XH
    Luminescence; 2021 May; 36(3):705-710. PubMed ID: 33300191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A reversible DNA-silver nanoclusters-based molecular fluorescence switch and its use for logic gate operation.
    Huang Z; Ren J; Qu X
    Mol Biosyst; 2012 Mar; 8(3):921-6. PubMed ID: 22286835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: a platform for label-free and sensitive fluorescence turn-on detection of multiple nucleic acid targets.
    Tao Y; Lin Y; Huang Z; Ren J; Qu X
    Analyst; 2012 Jun; 137(11):2588-92. PubMed ID: 22540117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights.
    Qu F; Zou X; Kong R; You J
    Talanta; 2016; 146():549-55. PubMed ID: 26695303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters.
    Mo Q; Liu F; Gao J; Zhao M; Shao N
    Anal Chim Acta; 2018 Mar; 1003():49-55. PubMed ID: 29317029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles.
    Park HW; Alam SM; Lee SH; Karim MM; Wabaidur SM; Kang M; Choi JH
    Luminescence; 2009; 24(6):367-71. PubMed ID: 19424962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly sensitive fluorescent and colorimetric pH sensor based on polyethylenimine-capped silver nanoclusters.
    Qu F; Li NB; Luo HQ
    Langmuir; 2013 Jan; 29(4):1199-205. PubMed ID: 23282222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave-Assisted Rapid Synthesis of Luminescent Tryptophan-Stabilized Silver Nanoclusters for Ultra-Sensitive Detection of Fe(III), and Their Application in a Test Strip.
    Saleh SM; El-Sayed WA; El-Manawaty MA; Gassoumi M; Ali R
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters.
    Hosseini M; Mehrabi F; Ganjali MR; Norouzi P
    Luminescence; 2016 Nov; 31(7):1339-1343. PubMed ID: 26899385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hairpin DNA probe with 5'-TCC/CCC-3' overhangs for the creation of silver nanoclusters and miRNA assay.
    Xia X; Hao Y; Hu S; Wang J
    Biosens Bioelectron; 2014 Jan; 51():36-9. PubMed ID: 23932977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.