These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 24972154)

  • 1. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics.
    Muñoz-García AB; Ritzmann AM; Pavone M; Keith JA; Carter EA
    Acc Chem Res; 2014 Nov; 47(11):3340-8. PubMed ID: 24972154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization combined with the first principles simulations of barium/strontium cobaltite/ferrite as promising material for solid oxide fuel cells cathodes and high-temperature oxygen permeation membranes.
    Gangopadhayay S; Inerbaev T; Masunov AE; Altilio D; Orlovskaya N
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1512-9. PubMed ID: 20355954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells.
    Shin TH; Ida S; Ishihara T
    J Am Chem Soc; 2011 Dec; 133(48):19399-407. PubMed ID: 22011010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.
    Kim J; Sengodan S; Kwon G; Ding D; Shin J; Liu M; Kim G
    ChemSusChem; 2014 Oct; 7(10):2811-5. PubMed ID: 25146887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A concerted migration mechanism of mixed oxide ion and electron conduction in reduced ceria studied by first-principles density functional theory.
    Nakayama M; Ohshima H; Nogami M; Martin M
    Phys Chem Chem Phys; 2012 May; 14(17):6079-84. PubMed ID: 22441331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the Electrochemical Performance of Fe-Based Layered Double Perovskite Cathodes by Zn
    Ren R; Wang Z; Meng X; Xu C; Qiao J; Sun W; Sun K
    ACS Appl Mater Interfaces; 2020 May; 12(21):23959-23967. PubMed ID: 32352274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxide ion transport in Sr2Fe1.5Mo0.5O(6-δ), a mixed ion-electron conductor: new insights from first principles modeling.
    Muñoz-García AB; Pavone M; Ritzmann AM; Carter EA
    Phys Chem Chem Phys; 2013 May; 15(17):6250-9. PubMed ID: 23515470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen vacancy formation and the ion migration mechanism in layered perovskite (Sr,La)3Fe2O(7-δ).
    Kagomiya I; Jimbo K; Kakimoto K; Nakayama M; Masson O
    Phys Chem Chem Phys; 2014 Jun; 16(22):10875-82. PubMed ID: 24760280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.
    Feng Z; Hong WT; Fong DD; Lee YL; Yacoby Y; Morgan D; Shao-Horn Y
    Acc Chem Res; 2016 May; 49(5):966-73. PubMed ID: 27149528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia.
    van Duin AC; Merinov BV; Jang SS; Goddard WA
    J Phys Chem A; 2008 Apr; 112(14):3133-40. PubMed ID: 18348544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La0.5Sr0.5Co0.25Fe0.75O3-δ).
    Ritzmann AM; Dieterich JM; Carter EA
    Phys Chem Chem Phys; 2016 Apr; 18(17):12260-9. PubMed ID: 27079696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effects of intrinsic cation disorder and electron-deficient substitution on ion and electron conductivity in La1-xSrxCo0.5Mn0.5O3-δ (x = 0, 0.5, and 0.75).
    Meng J; Yuan N; Liu X; Yao C; Liang Q; Zhou D; Meng F; Meng J
    Inorg Chem; 2015 Mar; 54(6):2820-9. PubMed ID: 25733063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dislocations in SrTiO3: easy to reduce but not so fast for oxygen transport.
    Marrocchelli D; Sun L; Yildiz B
    J Am Chem Soc; 2015 Apr; 137(14):4735-48. PubMed ID: 25751017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Solid Oxide Fuel Cell with an Electrochemically Surface-Tailored Oxygen Electrode.
    Park BK; Lee SB; Lim TH; Song RH; Lee JW
    ChemSusChem; 2018 Aug; 11(15):2620-2627. PubMed ID: 29808966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the ionic conductivity maximum in doped ceria: trapping and blocking.
    Koettgen J; Grieshammer S; Hein P; Grope BOH; Nakayama M; Martin M
    Phys Chem Chem Phys; 2018 May; 20(21):14291-14321. PubMed ID: 29479588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of atomic and molecular oxygen on the LaMnO3(001) surface: ab initio supercell calculations and thermodynamics.
    Kotomin EA; Mastrikov YA; Heifets E; Maier J
    Phys Chem Chem Phys; 2008 Aug; 10(31):4644-9. PubMed ID: 18665314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of the mixed B-site perovskite SmB
    Olsson E; Cottom J; Aparicio-Anglès X; de Leeuw NH
    Phys Chem Chem Phys; 2019 May; 21(18):9407-9418. PubMed ID: 30997472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.