These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 24972231)
1. Self-induced polar order of active Brownian particles in a harmonic trap. Hennes M; Wolff K; Stark H Phys Rev Lett; 2014 Jun; 112(23):238104. PubMed ID: 24972231 [TBL] [Abstract][Full Text] [Related]
3. Geometric capture and escape of a microswimmer colliding with an obstacle. Spagnolie SE; Moreno-Flores GR; Bartolo D; Lauga E Soft Matter; 2015 May; 11(17):3396-411. PubMed ID: 25800455 [TBL] [Abstract][Full Text] [Related]
4. Sedimentation and polar order of active bottom-heavy particles. Wolff K; Hahn AM; Stark H Eur Phys J E Soft Matter; 2013 Apr; 36(4):9858. PubMed ID: 23612748 [TBL] [Abstract][Full Text] [Related]
5. Active colloidal suspensions exhibit polar order under gravity. Enculescu M; Stark H Phys Rev Lett; 2011 Jul; 107(5):058301. PubMed ID: 21867100 [TBL] [Abstract][Full Text] [Related]
6. Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields. Wysocki A; Löwen H J Phys Condens Matter; 2011 Jul; 23(28):284117. PubMed ID: 21709336 [TBL] [Abstract][Full Text] [Related]
7. Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles. Lefauve A; Saintillan D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):021002. PubMed ID: 25353410 [TBL] [Abstract][Full Text] [Related]
8. Impact of external flow on the dynamics of swimming microorganisms near surfaces. Chilukuri S; Collins CH; Underhill PT J Phys Condens Matter; 2014 Mar; 26(11):115101. PubMed ID: 24590066 [TBL] [Abstract][Full Text] [Related]
9. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Zöttl A; Stark H Phys Rev Lett; 2014 Mar; 112(11):118101. PubMed ID: 24702421 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of cluster formation in driven magnetic colloids dispersed on a monolayer. Jäger S; Stark H; Klapp SH J Phys Condens Matter; 2013 May; 25(19):195104. PubMed ID: 23587804 [TBL] [Abstract][Full Text] [Related]
11. Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions. Matsuoka Y; Fukasawa T; Higashitani K; Yamamoto R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051403. PubMed ID: 23214780 [TBL] [Abstract][Full Text] [Related]
12. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition. Duval JF; Qian S J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749 [TBL] [Abstract][Full Text] [Related]
13. Hydrodynamic interactions in active colloidal crystal microrheology. Weeber R; Harting J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):057302. PubMed ID: 23214913 [TBL] [Abstract][Full Text] [Related]
14. Mesoscale simulations of hydrodynamic squirmer interactions. Götze IO; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327 [TBL] [Abstract][Full Text] [Related]
15. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface. Dani A; Yeganeh M; Maldarelli C J Colloid Interface Sci; 2022 Dec; 628(Pt B):931-945. PubMed ID: 36037716 [TBL] [Abstract][Full Text] [Related]
16. Key role of hydrodynamic interactions in colloidal gelation. Furukawa A; Tanaka H Phys Rev Lett; 2010 Jun; 104(24):245702. PubMed ID: 20867312 [TBL] [Abstract][Full Text] [Related]
17. Collective dynamics in systems of active Brownian particles with dissipative interactions. Lobaskin V; Romenskyy M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052135. PubMed ID: 23767515 [TBL] [Abstract][Full Text] [Related]
18. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions. Reinken H; Klapp SHL; Bär M; Heidenreich S Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118 [TBL] [Abstract][Full Text] [Related]
19. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach. Yariv E; Schnitzer O Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403 [TBL] [Abstract][Full Text] [Related]
20. Structural transitions and long-time self-diffusion of interacting colloids confined by a parabolic potential. Euán-Díaz EC; Herrera-Velarde S; Misko VR; Peeters FM; Castañeda-Priego R J Chem Phys; 2015 Jan; 142(2):024902. PubMed ID: 25591382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]