These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24972233)

  • 1. Foam drainage control using thermocapillary stress in a two-dimensional microchamber.
    Miralles V; Selva B; Cantat I; Jullien MC
    Phys Rev Lett; 2014 Jun; 112(23):238302. PubMed ID: 24972233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermocapillarity in Microfluidics-A Review.
    Karbalaei A; Kumar R; Cho HJ
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle separation by a moving air-liquid interface in a microchannel.
    Wang F; Chon CH; Li D
    J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubble dispenser in microfluidic devices.
    Cubaud T; Tatineni M; Zhong X; Ho CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037302. PubMed ID: 16241625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic stickers.
    Bartolo D; Degré G; Nghe P; Studer V
    Lab Chip; 2008 Feb; 8(2):274-9. PubMed ID: 18231666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the role of a poorly soluble surfactant in a thermally driven 2D microfoam.
    Miralles V; Rio E; Cantat I; Jullien MC
    Soft Matter; 2016 Aug; 12(33):7056-62. PubMed ID: 27493005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of static incubation time in microfluidic cell culture platforms exploiting extended air-liquid interface.
    Bose N; Das T; Chakraborty D; Maiti TK; Chakraborty S
    Lab Chip; 2012 Jan; 12(1):69-73. PubMed ID: 22076598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic device mimicking acinar concentration gradients across the liver acinus.
    Shih MC; Tseng SH; Weng YS; Chu IM; Liu CH
    Biomed Microdevices; 2013 Oct; 15(5):767-80. PubMed ID: 23563756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell.
    Osei-Bonsu K; Shokri N; Grassia P
    J Colloid Interface Sci; 2016 Jan; 462():288-96. PubMed ID: 26473278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foam drainage placed on a porous substrate.
    Arjmandi-Tash O; Kovalchuk N; Trybala A; Starov V
    Soft Matter; 2015 May; 11(18):3643-52. PubMed ID: 25811970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling regimes of thermocapillarity-driven dynamics of confined long bubbles: Effects of disjoining pressure.
    Chaudhury K; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033021. PubMed ID: 25871216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of sequential fluid delivery in a fully autonomous capillary microfluidic device.
    Novo P; Volpetti F; Chu V; Conde JP
    Lab Chip; 2013 Feb; 13(4):641-5. PubMed ID: 23263650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane).
    Weibel DB; Siegel AC; Lee A; George AH; Whitesides GM
    Lab Chip; 2007 Dec; 7(12):1832-6. PubMed ID: 18030408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite.
    Han YL; Wang W; Hu J; Huang G; Wang S; Lee WG; Lu TJ; Xu F
    Lab Chip; 2013 Dec; 13(24):4745-9. PubMed ID: 24172608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating.
    Logtenberg H; Lopez-Martinez MJ; Feringa BL; Browne WR; Verpoorte E
    Lab Chip; 2011 Jun; 11(12):2030-4. PubMed ID: 21409272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesive-based bonding technique for PDMS microfluidic devices.
    Thompson CS; Abate AR
    Lab Chip; 2013 Feb; 13(4):632-5. PubMed ID: 23282717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-driven ballistic Kelvin's water dropper for energy harvesting.
    Xie Y; de Boer HL; Sprenkels AJ; van den Berg A; Eijkel JC
    Lab Chip; 2014 Nov; 14(21):4171-7. PubMed ID: 25112848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.