These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24972299)

  • 1. Hydrogen production from ammonia using sodium amide.
    David WI; Makepeace JW; Callear SK; Hunter HM; Taylor JD; Wood TJ; Jones MO
    J Am Chem Soc; 2014 Sep; 136(38):13082-5. PubMed ID: 24972299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Production from Aqueous Solutions of Urea with Ruthenium-based Catalysts.
    Furukawa S; Suzuki R; Ochi K; Yashima T; Komatsu T
    ChemSusChem; 2015 Jun; 8(12):2028-30. PubMed ID: 25891973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Pore Confinement of NaNH
    Chang F; Wu H; Pluijm RV; Guo J; Ngene P; de Jongh PE
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(35):21487-21496. PubMed ID: 31523341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal decomposition of sodium amide, NaNH
    Jepsen LH; Wang P; Wu G; Xiong Z; Besenbacher F; Chen P; Jensen TR
    Phys Chem Chem Phys; 2016 Sep; 18(36):25257-25264. PubMed ID: 27722371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane.
    Li PZ; Aranishi K; Xu Q
    Chem Commun (Camb); 2012 Mar; 48(26):3173-5. PubMed ID: 22343827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction.
    Hansgen DA; Vlachos DG; Chen JG
    Nat Chem; 2010 Jun; 2(6):484-9. PubMed ID: 20489718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Thermal Ammonia Decomposition for Hydrogen Production over Carbon Films under Low-Temperature Plasma-In-Situ FTIR Studies.
    Moszczyńska J; Liu X; Wiśniewski M
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane.
    Akbayrak S; Ozkar S
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6302-10. PubMed ID: 23113804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia Decomposition with Manganese Nitride-Calcium Imide Composites as Efficient Catalysts.
    Yu P; Guo J; Liu L; Wang P; Wu G; Chang F; Chen P
    ChemSusChem; 2016 Feb; 9(4):364-9. PubMed ID: 26914173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.
    Yang M; Sun Y; Xu AH; Lu XY; Du HZ; Sun CL; Li C
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):66-70. PubMed ID: 17593307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH
    Pei Z; Bai Y; Wang Y; Wu F; Wu C
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31977-31984. PubMed ID: 28813588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition.
    Cao H; Guo J; Chang F; Pistidda C; Zhou W; Zhang X; Santoru A; Wu H; Schell N; Niewa R; Chen P; Klassen T; Dornheim M
    Chemistry; 2017 Jul; 23(41):9766-9771. PubMed ID: 28627715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and decomposition of Li3Na(NH2)4 and investigations of Li-Na-N-H based systems for hydrogen storage.
    Jepsen LH; Wang P; Wu G; Xiong Z; Besenbacher F; Chen P; Jensen TR
    Phys Chem Chem Phys; 2016 Jan; 18(3):1735-42. PubMed ID: 26672440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts.
    Ng PF; Li L; Wang S; Zhu Z; Lu G; Yan Z
    Environ Sci Technol; 2007 May; 41(10):3758-62. PubMed ID: 17547209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging trends in research and development on earth abundant materials for ammonia degradation coupled with H
    Zaidi Z; Kamlesh ; Gupta Y; Singhai S; Mudgal M; Singh A
    Sci Technol Adv Mater; 2024; 25(1):2301423. PubMed ID: 38357414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni-Supported Pd Nanoparticles with Ca Promoter: A New Catalyst for Low-Temperature Ammonia Cracking.
    Polanski J; Bartczak P; Ambrozkiewicz W; Sitko R; Siudyga T; Mianowski A; Szade J; Balin K; Lelątko J
    PLoS One; 2015; 10(8):e0136805. PubMed ID: 26308929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Na
    Wang C; Wang C; Wang J; Wang J; Shen M; Li W
    J Environ Sci (China); 2018 Aug; 70():20-28. PubMed ID: 30037406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems.
    Lezcano-Gonzalez I; Deka U; Arstad B; Van Yperen-De Deyne A; Hemelsoet K; Waroquier M; Van Speybroeck V; Weckhuysen BM; Beale AM
    Phys Chem Chem Phys; 2014 Jan; 16(4):1639-50. PubMed ID: 24322601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel microfibrous composite bed reactor: high efficiency H2 production from NH3 with potential for portable fuel cell power supplies.
    Lu Y; Wang H; Liu Y; Xue Q; Chen L; He M
    Lab Chip; 2007 Jan; 7(1):133-40. PubMed ID: 17180216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Uptake and Release of Ammonia by Nickel Halide Ammines.
    Breternitz J; Vilk YE; Giraud E; Reardon H; Hoang TK; Godula-Jopek A; Gregory DH
    ChemSusChem; 2016 Jun; 9(11):1312-21. PubMed ID: 27137479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.