These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24972356)

  • 1. Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media.
    Gardner AR; Hayakawa CK; Venugopalan V
    J Biomed Opt; 2014 Jun; 19(6):065003. PubMed ID: 24972356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental spectro-angular mapping of light distribution in turbid media.
    Grabtchak S; Palmer TJ; Foschum F; Liemert A; Kienle A; Whelan WM
    J Biomed Opt; 2012 Jun; 17(6):067007. PubMed ID: 22734785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations.
    Kamran F; Andersen PE
    Appl Opt; 2015 Aug; 54(23):7099-105. PubMed ID: 26368382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field Monte Carlo simulation of focused stimulated emission depletion beam, radially and azimuthally polarized beams for in vivo deep bioimaging.
    Cai F; He S
    J Biomed Opt; 2014 Jan; 19(1):11022. PubMed ID: 24464046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image contrast enhancement in angular domain optical imaging of turbid media.
    Vasefi F; Kaminska B; Chapman GH; Carson JJ
    Opt Express; 2008 Dec; 16(26):21492-504. PubMed ID: 19104579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of optical properties of superficial volumes of layered tissue phantoms.
    Tseng SH; Hayakawa CK; Spanier J; Durkin AJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):335-9. PubMed ID: 18232377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media.
    Reif R; A'Amar O; Bigio IJ
    Appl Opt; 2007 Oct; 46(29):7317-28. PubMed ID: 17932546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.
    Dam JS; Yavari N; Sørensen S; Andersson-Engels S
    Appl Opt; 2005 Jul; 44(20):4281-90. PubMed ID: 16045216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of polarized light in birefringent turbid media: a Monte Carlo study.
    Wang X; Wang LV
    J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media.
    Powell S; Leung TS
    J Biomed Opt; 2012 Apr; 17(4):045002. PubMed ID: 22559676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model.
    Seo I; You JS; Hayakawa CK; Venugopalan V
    J Biomed Opt; 2007; 12(1):014030. PubMed ID: 17343505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for boron neutron capture therapy.
    Nievaart VA; Légràdy D; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H
    Med Phys; 2007 Apr; 34(4):1321-35. PubMed ID: 17500463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method.
    Żołek N; Rix H; Botwicz M
    Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method to determine the optical properties of turbid media.
    Prerana ; Shenoy MR; Pal BP
    Appl Opt; 2008 Jun; 47(17):3216-20. PubMed ID: 18545296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination.
    Joshi N; Donner C; Jensen HW
    Opt Lett; 2006 Apr; 31(7):936-8. PubMed ID: 16599217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance.
    Hochuli R; Powell S; Arridge S; Cox B
    J Biomed Opt; 2016 Dec; 21(12):126004. PubMed ID: 27918801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the optical properties of anisotropic biological media using an isotropic diffusion model.
    Kienle A; Wetzel C; Bassi A; Comelli D; Taroni P; Pifferi A
    J Biomed Opt; 2007; 12(1):014026. PubMed ID: 17343501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.