BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24972687)

  • 1. Effect of polyelectrolyte adsorption on lateral distribution and dynamics of anionic lipids: a Monte Carlo study of a coarse-grain model.
    Duan X; Zhang R; Li Y; Yang Y; Shi T; An L; Huang Q
    Eur Biophys J; 2014 Sep; 43(8-9):377-91. PubMed ID: 24972687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compositional redistribution and dynamic heterogeneity in mixed lipid membrane induced by polyelectrolyte adsorption: effects of chain rigidity.
    Duan X; Li Y; Zhang R; Shi T; An L; Huang Q
    Eur Phys J E Soft Matter; 2014 Aug; 37(8):27. PubMed ID: 25143187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo study of polyelectrolyte adsorption on mixed lipid membrane.
    Duan X; Zhang R; Li Y; Shi T; An L; Huang Q
    J Phys Chem B; 2013 Jan; 117(4):989-1002. PubMed ID: 23289934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Concentration and Ionization Degree of Anchoring Cationic Polymers on the Lateral Heterogeneity of Anionic Lipid Monolayers.
    Duan X; Zhang Y; Li L; Zhang R; Ding M; Huang Q; Xu WS; Shi T; An L
    J Phys Chem B; 2017 Feb; 121(5):984-994. PubMed ID: 28110529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chain rigidity on the adsorption of a polyelectrolyte chain on mixed lipid monolayer: a Monte Carlo study.
    Duan X; Ding M; Zhang R; Li L; Shi T; An L; Huang Q; Xu WS
    J Phys Chem B; 2015 May; 119(19):6041-9. PubMed ID: 25905643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein diffusion on charged membranes: a dynamic mean-field model describes time evolution and lipid reorganization.
    Khelashvili G; Weinstein H; Harries D
    Biophys J; 2008 Apr; 94(7):2580-97. PubMed ID: 18065451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations.
    Tzlil S; Ben-Shaul A
    Biophys J; 2005 Nov; 89(5):2972-87. PubMed ID: 16126828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic origins of polyelectrolyte adsorption: Theory and Monte Carlo simulations.
    Wang L; Liang H; Wu J
    J Chem Phys; 2010 Jul; 133(4):044906. PubMed ID: 20687685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: a Monte Carlo simulation study.
    Luque-Caballero G; Martín-Molina A; Quesada-Pérez M
    J Chem Phys; 2014 May; 140(17):174701. PubMed ID: 24811649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonrandom adsorption of polyelectrolyte chains on finite regularly charged surfaces.
    Nunes SC; Pinto P; Pais AA
    J Comput Chem; 2013 May; 34(14):1198-209. PubMed ID: 23386422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral dynamics of proteins with polybasic domain on anionic membranes: a dynamic Monte-Carlo study.
    Kiselev VY; Marenduzzo D; Goryachev AB
    Biophys J; 2011 Mar; 100(5):1261-70. PubMed ID: 21354399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle adsorption on a weak polyelectrolyte. Stiffness, pH, charge mobility, and ionic concentration effects investigated by Monte Carlo simulations.
    Ulrich S; Seijo M; Laguecir A; Stoll S
    J Phys Chem B; 2006 Oct; 110(42):20954-64. PubMed ID: 17048913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the mobility coupling of quaternized polyvinylpyridine and anionic phospholipids in supported lipid bilayers.
    Shi X; Li X; Kaliszewski MJ; Zhuang X; Smith AW
    Langmuir; 2015 Feb; 31(5):1784-91. PubMed ID: 25599116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PIP2 Influences the Conformational Dynamics of Membrane-Bound KRAS4b.
    McLean MA; Stephen AG; Sligar SG
    Biochemistry; 2019 Aug; 58(33):3537-3545. PubMed ID: 31339036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of pH-responsive polyelectrolyte chains onto spherical macroions.
    de Oliveira VM; de Carvalho SJ
    Eur Phys J E Soft Matter; 2014 Aug; 37(8):29. PubMed ID: 25160485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-polyelectrolyte cluster formation and redissolution: a Monte Carlo study.
    Carlsson F; Malmsten M; Linse P
    J Am Chem Soc; 2003 Mar; 125(10):3140-9. PubMed ID: 12617682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of polyelectrolyte-like proteins to silica surfaces and the impact of pH on the response to ionic strength. A Monte Carlo simulation and ellipsometry study.
    Hyltegren K; Skepö M
    J Colloid Interface Sci; 2017 May; 494():266-273. PubMed ID: 28160710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Rearrangement and Mobility Heterogeneity of an Anionic Lipid Monolayer Induced by the Anchoring of Cationic Semiflexible Polymer Chains.
    Duan X; Zhang Y; Zhang R; Ding M; Shi T; An L; Huang Q; Xu WS
    Polymers (Basel); 2016 Jun; 8(6):. PubMed ID: 30979330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+)-dependent binding of endonexin (annexin IV) to membranes: analysis of the effects of membrane lipid composition and development of a predictive model for the binding interaction.
    Junker M; Creutz CE
    Biochemistry; 1994 Aug; 33(30):8930-40. PubMed ID: 8043580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.