BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 24972921)

  • 1. Three-dimensional knee joint contact forces during walking in unilateral transtibial amputees.
    Silverman AK; Neptune RR
    J Biomech; 2014 Aug; 47(11):2556-62. PubMed ID: 24972921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.
    Fey NP; Klute GK; Neptune RR
    J Biomech Eng; 2012 Nov; 134(11):111005. PubMed ID: 23387787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual muscle contributions to the axial knee joint contact force during normal walking.
    Sasaki K; Neptune RR
    J Biomech; 2010 Oct; 43(14):2780-4. PubMed ID: 20655046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knee joint biomechanics in transtibial amputees in gait, cycling, and elliptical training.
    Orekhov G; Robinson AM; Hazelwood SJ; Klisch SM
    PLoS One; 2019; 14(12):e0226060. PubMed ID: 31830082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle and prosthesis contributions to amputee walking mechanics: a modeling study.
    Silverman AK; Neptune RR
    J Biomech; 2012 Aug; 45(13):2271-8. PubMed ID: 22840757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations.
    Koelewijn AD; van den Bogert AJ
    Gait Posture; 2016 Sep; 49():219-225. PubMed ID: 27459416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface.
    Huang S; Ferris DP
    J Neuroeng Rehabil; 2012 Aug; 9():55. PubMed ID: 22882763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.
    Silverman AK; Fey NP; Portillo A; Walden JG; Bosker G; Neptune RR
    Gait Posture; 2008 Nov; 28(4):602-9. PubMed ID: 18514526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():65-72. PubMed ID: 29698851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher knee contact forces might underlie increased osteoarthritis rates in high functioning amputees: A pilot study.
    Ding Z; Jarvis HL; Bennett AN; Baker R; Bull AMJ
    J Orthop Res; 2021 Apr; 39(4):850-860. PubMed ID: 32427347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D intersegmental knee loading in below-knee amputees across steady-state walking speeds.
    Fey NP; Neptune RR
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):409-14. PubMed ID: 22138437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective lateral muscle activation in moderate medial knee osteoarthritis subjects does not unload medial knee condyle.
    Brandon SC; Miller RH; Thelen DG; Deluzio KJ
    J Biomech; 2014 Apr; 47(6):1409-15. PubMed ID: 24581816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.
    Seyedali M; Czerniecki JM; Morgenroth DC; Hahn ME
    J Neuroeng Rehabil; 2012 May; 9():29. PubMed ID: 22640660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trunk-pelvis motion, joint loads, and muscle forces during walking with a transtibial amputation.
    Yoder AJ; Petrella AJ; Silverman AK
    Gait Posture; 2015 Mar; 41(3):757-62. PubMed ID: 25748611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study.
    De Pauw K; Serrien B; Baeyens JP; Cherelle P; De Bock S; Ghillebert J; Bailey SP; Lefeber D; Roelands B; Vanderborght B; Meeusen R
    Clin Biomech (Bristol, Avon); 2020 Jan; 71():59-67. PubMed ID: 31704536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of transtibial amputee and non-amputee biomechanics during a common turning task.
    Segal AD; Orendurff MS; Czerniecki JM; Schoen J; Klute GK
    Gait Posture; 2011 Jan; 33(1):41-7. PubMed ID: 20974535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.