BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

693 related articles for article (PubMed ID: 24973611)

  • 1. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating drone imagery with existing rangeland monitoring programs.
    Gillan JK; Karl JW; van Leeuwen WJD
    Environ Monit Assess; 2020 Apr; 192(5):269. PubMed ID: 32253518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground-level Unmanned Aerial System Imagery Coupled with Spatially Balanced Sampling and Route Optimization to Monitor Rangeland Vegetation.
    Curran MF; Hodza P; Cox SE; Lanning SG; Robertson BL; Robinson TJ; Stahl PD
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32597863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.
    Swetnam TL; Gillan JK; Sankey TT; McClaran MP; Nichols MH; Heilman P; McVay J
    Front Plant Sci; 2017; 8():2144. PubMed ID: 29379511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation.
    Kilpatrick AD; Lewis MM; Ostendorf B
    PLoS One; 2015; 10(11):e0142742. PubMed ID: 26565801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of Very-High-Resolution Aerial Imagery to Estimate the Structure and Distribution of the
    Abdullah MM; Al-Ali ZM; Abdullah MT; Al-Anzi B
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34068447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting new Buffel grass infestations in Australian arid lands: evaluation of methods using high-resolution multispectral imagery and aerial photography.
    Marshall VM; Lewis MM; Ostendorf B
    Environ Monit Assess; 2014 Mar; 186(3):1689-703. PubMed ID: 24234223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rangeland and pasture monitoring: an approach to interpretation of high-resolution imagery focused on observer calibration for repeatability.
    Duniway MC; Karl JW; Schrader S; Baquera N; Herrick JE
    Environ Monit Assess; 2012 Jun; 184(6):3789-804. PubMed ID: 21785839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies.
    Montesano PM; Neigh C; Sun G; Duncanson L; Hoek JVD; Jon Ranson K
    Remote Sens Environ; 2017 Jul; 196():76-88. PubMed ID: 32848282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution forest canopy height estimation in an African blue carbon ecosystem.
    Lagomasino D; Fatoyinbo T; Lee SK; Simard M
    Remote Sens Ecol Conserv; 2015 Oct; 1(1):51-60. PubMed ID: 27980807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wildlife-friendly farming recouples grazing regimes to stimulate recovery in semi-arid rangelands.
    Hasselerharm CD; Yanco E; McManus JS; Smuts BH; Ramp D
    Sci Total Environ; 2021 Sep; 788():147602. PubMed ID: 34029808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.
    Gordon CE; Price OF; Tasker EM
    Ecol Appl; 2017 Jul; 27(5):1618-1632. PubMed ID: 28390084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy assessment of digital surface models based on WorldView-2 and ADS80 stereo remote sensing data.
    Hobi ML; Ginzler C
    Sensors (Basel); 2012; 12(5):6347-68. PubMed ID: 22778645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground-cover measurements: assessing correlation among aerial and ground-based methods.
    Booth DT; Cox SE; Meikle T; Zuuring HR
    Environ Manage; 2008 Dec; 42(6):1091-100. PubMed ID: 18446407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UAV-Based Digital Terrain Model Generation under Leaf-Off Conditions to Support Teak Plantations Inventories in Tropical Dry Forests. A Case of the Coastal Region of Ecuador.
    Aguilar FJ; Rivas JR; Nemmaoui A; Peñalver A; Aguilar MA
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay.
    Barnas AF; Darby BJ; Vandeberg GS; Rockwell RF; Ellis-Felege SN
    PLoS One; 2019; 14(8):e0217049. PubMed ID: 31398201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.