These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
685 related articles for article (PubMed ID: 24973611)
1. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring. Gillan JK; Karl JW; Duniway M; Elaksher A J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611 [TBL] [Abstract][Full Text] [Related]
2. Integrating drone imagery with existing rangeland monitoring programs. Gillan JK; Karl JW; van Leeuwen WJD Environ Monit Assess; 2020 Apr; 192(5):269. PubMed ID: 32253518 [TBL] [Abstract][Full Text] [Related]
3. Ground-level Unmanned Aerial System Imagery Coupled with Spatially Balanced Sampling and Route Optimization to Monitor Rangeland Vegetation. Curran MF; Hodza P; Cox SE; Lanning SG; Robertson BL; Robinson TJ; Stahl PD J Vis Exp; 2020 Jun; (160):. PubMed ID: 32597863 [TBL] [Abstract][Full Text] [Related]
4. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States. Swetnam TL; Gillan JK; Sankey TT; McClaran MP; Nichols MH; Heilman P; McVay J Front Plant Sci; 2017; 8():2144. PubMed ID: 29379511 [TBL] [Abstract][Full Text] [Related]
5. Rangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation. Kilpatrick AD; Lewis MM; Ostendorf B PLoS One; 2015; 10(11):e0142742. PubMed ID: 26565801 [TBL] [Abstract][Full Text] [Related]
6. The Use of Very-High-Resolution Aerial Imagery to Estimate the Structure and Distribution of the Abdullah MM; Al-Ali ZM; Abdullah MT; Al-Anzi B Plants (Basel); 2021 May; 10(5):. PubMed ID: 34068447 [TBL] [Abstract][Full Text] [Related]
7. Detecting new Buffel grass infestations in Australian arid lands: evaluation of methods using high-resolution multispectral imagery and aerial photography. Marshall VM; Lewis MM; Ostendorf B Environ Monit Assess; 2014 Mar; 186(3):1689-703. PubMed ID: 24234223 [TBL] [Abstract][Full Text] [Related]
8. Rangeland and pasture monitoring: an approach to interpretation of high-resolution imagery focused on observer calibration for repeatability. Duniway MC; Karl JW; Schrader S; Baquera N; Herrick JE Environ Monit Assess; 2012 Jun; 184(6):3789-804. PubMed ID: 21785839 [TBL] [Abstract][Full Text] [Related]
9. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. Montesano PM; Neigh C; Sun G; Duncanson L; Hoek JVD; Jon Ranson K Remote Sens Environ; 2017 Jul; 196():76-88. PubMed ID: 32848282 [TBL] [Abstract][Full Text] [Related]
10. High-resolution forest canopy height estimation in an African blue carbon ecosystem. Lagomasino D; Fatoyinbo T; Lee SK; Simard M Remote Sens Ecol Conserv; 2015 Oct; 1(1):51-60. PubMed ID: 27980807 [TBL] [Abstract][Full Text] [Related]
11. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
12. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution. Park S; Lee H; Chon J Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230 [TBL] [Abstract][Full Text] [Related]
13. Wildlife-friendly farming recouples grazing regimes to stimulate recovery in semi-arid rangelands. Hasselerharm CD; Yanco E; McManus JS; Smuts BH; Ramp D Sci Total Environ; 2021 Sep; 788():147602. PubMed ID: 34029808 [TBL] [Abstract][Full Text] [Related]
14. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR. Gordon CE; Price OF; Tasker EM Ecol Appl; 2017 Jul; 27(5):1618-1632. PubMed ID: 28390084 [TBL] [Abstract][Full Text] [Related]
15. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites. Maynard JJ; Karl JW PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731 [TBL] [Abstract][Full Text] [Related]
16. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing. Hakkenberg CR; Zhu K; Peet RK; Song C Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965 [TBL] [Abstract][Full Text] [Related]
17. Accuracy assessment of digital surface models based on WorldView-2 and ADS80 stereo remote sensing data. Hobi ML; Ginzler C Sensors (Basel); 2012; 12(5):6347-68. PubMed ID: 22778645 [TBL] [Abstract][Full Text] [Related]
18. Ground-cover measurements: assessing correlation among aerial and ground-based methods. Booth DT; Cox SE; Meikle T; Zuuring HR Environ Manage; 2008 Dec; 42(6):1091-100. PubMed ID: 18446407 [TBL] [Abstract][Full Text] [Related]
19. UAV-Based Digital Terrain Model Generation under Leaf-Off Conditions to Support Teak Plantations Inventories in Tropical Dry Forests. A Case of the Coastal Region of Ecuador. Aguilar FJ; Rivas JR; Nemmaoui A; Peñalver A; Aguilar MA Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027155 [TBL] [Abstract][Full Text] [Related]
20. A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay. Barnas AF; Darby BJ; Vandeberg GS; Rockwell RF; Ellis-Felege SN PLoS One; 2019; 14(8):e0217049. PubMed ID: 31398201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]