BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 24973612)

  • 1. Identification and mapping of natural vegetation on a coastal site using a Worldview-2 satellite image.
    Rapinel S; Clément B; Magnanon S; Sellin V; Hubert-Moy L
    J Environ Manage; 2014 Nov; 144():236-46. PubMed ID: 24973612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia.
    Nigatu Wondrade ; Dick ØB; Tveite H
    Environ Monit Assess; 2014 Mar; 186(3):1765-80. PubMed ID: 24310365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing.
    Zomer RJ; Trabucco A; Ustin SL
    J Environ Manage; 2009 May; 90(7):2170-7. PubMed ID: 18395960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme.
    Valderrama-Landeros L; Flores-de-Santiago F; Kovacs JM; Flores-Verdugo F
    Environ Monit Assess; 2017 Dec; 190(1):23. PubMed ID: 29242995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysis.
    Hutchinson JMS; Jacquin A; Hutchinson SL; Verbesselt J
    J Environ Manage; 2015 Mar; 150():355-366. PubMed ID: 25441663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of remote and in situ information to the management of wetlands in Poland.
    Dabrowska-Zielinska K; Gruszczynska M; Lewinski S; Hoscilo A; Bojanowski J
    J Environ Manage; 2009 May; 90(7):2261-9. PubMed ID: 18423845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Land use change detection and impact assessment in Anzali international coastal wetland using multi-temporal satellite images.
    Mousazadeh R; Ghaffarzadeh H; Nouri J; Gharagozlou A; Farahpour M
    Environ Monit Assess; 2015 Dec; 187(12):776. PubMed ID: 26614306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Land use and land cover (LULC) of the Republic of the Maldives: first national map and LULC change analysis using remote-sensing data.
    Fallati L; Savini A; Sterlacchini S; Galli P
    Environ Monit Assess; 2017 Aug; 189(8):417. PubMed ID: 28748428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation.
    Kilpatrick AD; Lewis MM; Ostendorf B
    PLoS One; 2015; 10(11):e0142742. PubMed ID: 26565801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An object-based image analysis approach for aquaculture ponds precise mapping and monitoring: a case study of Tam Giang-Cau Hai Lagoon, Vietnam.
    Virdis SG
    Environ Monit Assess; 2014 Jan; 186(1):117-33. PubMed ID: 23955440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8.
    Sánchez-Espinosa A; Schröder C
    J Environ Manage; 2019 Oct; 247():484-498. PubMed ID: 31254763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving surface-subsurface water budgeting using high resolution satellite imagery applied on a brownfield.
    Dujardin J; Batelaan O; Canters F; Boel S; Anibas C; Bronders J
    Sci Total Environ; 2011 Jan; 409(4):800-9. PubMed ID: 21112074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using remote sensing in support of environmental management: A framework for selecting products, algorithms and methods.
    de Klerk HM; Gilbertson J; Lück-Vogel M; Kemp J; Munch Z
    J Environ Manage; 2016 Nov; 182():564-573. PubMed ID: 27543751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping potential, existing and efficient wetlands using free remote sensing data.
    Rapinel S; Fabre E; Dufour S; Arvor D; Mony C; Hubert-Moy L
    J Environ Manage; 2019 Oct; 247():829-839. PubMed ID: 31336348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nationwide classification of forest types of India using remote sensing and GIS.
    Reddy CS; Jha CS; Diwakar PG; Dadhwal VK
    Environ Monit Assess; 2015 Dec; 187(12):777. PubMed ID: 26615560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact.
    Khanna S; Santos MJ; Ustin SL; Shapiro K; Haverkamp PJ; Lay M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fractional vegetation cover of invasive Spartina alterniflora in coastal wetland using unmanned aerial vehicle (UAV)remote sensing].
    Zhou ZM; Yang YM; Chen BQ
    Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):3920-3926. PubMed ID: 29704351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forest cover of insular Southeast Asia mapped from recent satellite images of coarse spatial resolution.
    Stibig HJ; Malingreau JP
    Ambio; 2003 Nov; 32(7):469-75. PubMed ID: 14703906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting the environmental impact of off-road vehicles on Rawdat Al Shams in central Saudi Arabia by remote sensing.
    Dewidar K; Thomas J; Bayoumi S
    Environ Monit Assess; 2016 Jul; 188(7):396. PubMed ID: 27270484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.