BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 24973788)

  • 1. Spectroscopic studies of 1,4-dimethoxy-2,3-dimethylanthracene-9,10-dione on plasmonic silver nanoparticles.
    Kavitha SR; Umadevi M; Vanelle P; Terme T; Khoumeri O; Sridhar B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():472-9. PubMed ID: 24973788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of role of silver nanoparticles on spectroscopic properties of biologically active coumarin dyes 4PTMBC and 1IPMBC.
    Raghavendra UP; Basanagouda M; Thipperudrappa J
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():350-9. PubMed ID: 26056986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The quenching effect of silver nanoparticles on 2-amino-3-bromo-1, 4-naphthoquinone using fluorescence spectroscopy.
    Manikandan P; Pushpam S; Sasirekha V; Rani JS; Ramakrishnan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():276-81. PubMed ID: 24252292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence quenching and photocatalytic degradation of textile dyeing waste water by silver nanoparticles.
    Kavitha SR; Umadevi M; Janani SR; Balakrishnan T; Ramanibai R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jun; 127():115-21. PubMed ID: 24632164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of silver nanoparticles on 2,3-bis(chloromethyl)anthracene-1,4,9,10-tetraone.
    Umadevi M; Sridevi NA; Sharmila AS; Rajkumar BJ; Mary MB; Vanelle P; Terme T; Khoumeri O
    J Fluoresc; 2010 Jan; 20(1):153-61. PubMed ID: 19705260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Surface of Metallic Gold and Silver Nanoparticles Induced Fluorescence Quenching of Meso-Terakis (4-Sulfonatophenyl) Porphyrin (TPPS) and Theoretical-Experimental Comparable.
    Aboalhassan AA; El-Daly SA; Ebeid EM; Sakr MAS
    J Fluoresc; 2022 Nov; 32(6):2257-2269. PubMed ID: 36045307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical, structural and morphological properties of silver nanoparticles and its influence on the photocatalytic activity of TiO2.
    Umadevi M; Jegatha Christy A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():80-5. PubMed ID: 23608130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of sonochemically synthesized gold nanoparticles with serum albumins.
    Naveenraj S; Anandan S; Kathiravan A; Renganathan R; Ashokkumar M
    J Pharm Biomed Anal; 2010 Nov; 53(3):804-10. PubMed ID: 20456895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles.
    Stobiecka M; Hepel M
    Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective turn-on fluorescence assay of 6-thioguanine by using harmine-modified silver nanoparticles.
    Amjadi M; Farzampour L
    Luminescence; 2014 Sep; 29(6):689-94. PubMed ID: 24288350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence enhancement monitoring of pyrromethene laser dyes by metallic Ag nanoparticles.
    Sakr ME; Abou Kana MT; Abdel Fattah G
    Luminescence; 2014 Nov; 29(7):938-44. PubMed ID: 24652745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of glucose-derived carbon quantum dots with silver and gold nanoparticles and its application for the fluorescence detection of 6-thioguanine.
    Amjadi M; Shokri R; Hallaj T
    Luminescence; 2017 May; 32(3):292-297. PubMed ID: 27406471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-enhanced fluorescence of conjugated polyelectrolytes with self-assembled silver nanoparticle platforms.
    Geng J; Liang J; Wang Y; Gurzadyan GG; Liu B
    J Phys Chem B; 2011 Apr; 115(13):3281-8. PubMed ID: 21391695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles.
    Park HW; Alam SM; Lee SH; Karim MM; Wabaidur SM; Kang M; Choi JH
    Luminescence; 2009; 24(6):367-71. PubMed ID: 19424962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive Multispectroscopic Analysis on the Interaction and Corona Formation of Human Serum Albumin with Gold/Silver Alloy Nanoparticles.
    Selva Sharma A; Ilanchelian M
    J Phys Chem B; 2015 Jul; 119(30):9461-76. PubMed ID: 26106942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the Effect of Silver Nanoparticles on the Fluorescence Intensity of Bambuterol and its Active Metabolite Terbutaline Using FRET.
    Abd Elhaleem SM; Elsebaei F; Shalan S; Belal F
    J Fluoresc; 2023 Sep; 33(5):1717-1725. PubMed ID: 36826730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence quenching of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by silver nanoparticles: size effect.
    Umadevi M; Vanelle P; Terme T; Rajkumar BJ; Ramakrishnan V
    J Fluoresc; 2009 Jan; 19(1):3-10. PubMed ID: 18642066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of interparticle interaction between colloidal Ag nanoparticles coated with trisodium citrate and safranine by using FRET: spectroscopic and mechanistic approach.
    Mokashi VV; Gore AH; Sudarsan V; Rath MC; Han SH; Patil SR; Kolekar GB
    J Photochem Photobiol B; 2012 Aug; 113():63-9. PubMed ID: 22673014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigation of S-Ag interaction in omega-mercaptoundecanoic acid capped silver nanoparticles.
    Tripathy SK; Yu YT
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):841-4. PubMed ID: 19167270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.