BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 24974015)

  • 21. Permanganate oxidation of polycyclic aromatic compounds (PAHs and polar PACs): column experiments with DNAPL at residual saturation.
    Johansson C; Bataillard P; Biache C; Lorgeoux C; Colombano S; Joubert A; Défarge C; Faure P
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15966-15982. PubMed ID: 34642882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ferrate
    Johansson C; Bataillard P; Biache C; Lorgeoux C; Colombano S; Joubert A; Pigot T; Faure P
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):704-716. PubMed ID: 31808080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low temperature oxidation of a coking plant soil organic matter and its major constituents: an experimental approach to simulate a long term evolution.
    Biache C; Ghislain T; Faure P; Mansuy-Huault L
    J Hazard Mater; 2011 Apr; 188(1-3):221-30. PubMed ID: 21333443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fenton-like and potassium permanganate oxidations of PAH-contaminated soils: Impact of oxidant doses on PAH and polar PAC (polycyclic aromatic compound) behavior.
    Boulangé M; Lorgeoux C; Biache C; Saada A; Faure P
    Chemosphere; 2019 Jun; 224():437-444. PubMed ID: 30831494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables.
    Kananizadeh N; Chokejaroenrat C; Li Y; Comfort S
    J Contam Hydrol; 2015 Feb; 173():25-37. PubMed ID: 25528134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV
    J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.
    Biache C; Lorgeoux C; Andriatsihoarana S; Colombano S; Faure P
    J Hazard Mater; 2015 Apr; 286():55-63. PubMed ID: 25557939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater.
    Wei KH; Ma J; Xi BD; Yu MD; Cui J; Chen BL; Li Y; Gu QB; He XS
    J Hazard Mater; 2022 Jun; 432():128738. PubMed ID: 35338938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.
    Ranc B; Faure P; Croze V; Lorgeoux C; Simonnot MO
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11265-11278. PubMed ID: 28299567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interphase mass transfer during chemical oxidation of TCE DNAPL in an aqueous system.
    Urynowicz MA; Siegrist RL
    J Contam Hydrol; 2005 Nov; 80(3-4):93-106. PubMed ID: 16214259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.
    Yuan B; Li F; Chen Y; Fu ML
    J Environ Sci (China); 2013 May; 25(5):971-7. PubMed ID: 24218827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental upscaling analyses for a surfactant-enhanced in-situ chemical oxidation (S-ISCO) remediation design.
    Herzog BM; Kleinknecht SM; Haslauer CP; Klaas N
    J Contam Hydrol; 2023 Sep; 258():104230. PubMed ID: 37481897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study.
    Kao CM; Huang KD; Wang JY; Chen TY; Chien HY
    J Hazard Mater; 2008 May; 153(3):919-27. PubMed ID: 18006224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.
    Chong AD; Mayer KU
    J Contam Hydrol; 2017 Sep; 204():1-10. PubMed ID: 28830695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surfactant-enhanced in-situ oxidation of DNAPL source zone: Experiments and numerical modeling.
    Demiray Z; Akyol NH; Akyol G; Copty NK
    J Contam Hydrol; 2023 Sep; 258():104233. PubMed ID: 37625208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils.
    Usman M; Chaudhary A; Biache C; Faure P; Hanna K
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1371-80. PubMed ID: 26362641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.
    Chokejaroenrat C; Comfort S; Sakulthaew C; Dvorak B
    J Hazard Mater; 2014 Mar; 268():177-84. PubMed ID: 24491441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs.
    Liao X; Wu Z; Li Y; Cao H; Su C
    Chemosphere; 2019 Jul; 226():483-491. PubMed ID: 30951943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.