These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 24974084)
1. Induced fit docking, pharmacophore modeling, and molecular dynamic simulations on thiazolidinedione derivatives to explore key interactions with Tyr48 in polyol pathway. Vijjulatha M; Lingala Y; Merugu RT J Mol Model; 2014 Jul; 20(7):2348. PubMed ID: 24974084 [TBL] [Abstract][Full Text] [Related]
2. Non-carboxylic acid inhibitors of aldose reductase based on N-substituted thiazolidinedione derivatives. Mohd Siddique MU; Thakur A; Shilkar D; Yasmin S; Halakova D; Kovacikova L; Prnova MS; Stefek M; Acevedo O; Dasararaju G; Devadasan V; Mondal SK; Jayaprakash V Eur J Med Chem; 2021 Nov; 223():113630. PubMed ID: 34175538 [TBL] [Abstract][Full Text] [Related]
3. Validation of TZD Scaffold as Potential ARIs: Pharmacophore Modeling, Atom-based 3D QSAR and Docking Studies. Dahiya L; Mahapatra MK; Kaur R; Kumar V; Kumar M Comb Chem High Throughput Screen; 2017; 20(4):310-320. PubMed ID: 28302016 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen bonding interactions between aldose reductase complexed with NADP(H) and inhibitor tolrestat studied by molecular dynamics simulations and binding assay. Lee YS; Hodoscek M; Kador PF; Sugiyama K Chem Biol Interact; 2003 Feb; 143-144():307-16. PubMed ID: 12604217 [TBL] [Abstract][Full Text] [Related]
5. Pharmacophore modeling, molecular docking, and molecular dynamics simulation approaches for identifying new lead compounds for inhibiting aldose reductase 2. Sakkiah S; Thangapandian S; Lee KW J Mol Model; 2012 Jul; 18(7):3267-82. PubMed ID: 22249747 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives. Maccari R; Ottanà R; Ciurleo R; Rakowitz D; Matuszczak B; Laggner C; Langer T Bioorg Med Chem; 2008 Jun; 16(11):5840-52. PubMed ID: 18492610 [TBL] [Abstract][Full Text] [Related]
7. Probing flexibility and "induced-fit" phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations. Sotriffer CA; Krämer O; Klebe G Proteins; 2004 Jul; 56(1):52-66. PubMed ID: 15162486 [TBL] [Abstract][Full Text] [Related]
8. In vitro studies of potent aldose reductase inhibitors: Synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Celestina SK; Sundaram K; Ravi S Bioorg Chem; 2020 Apr; 97():103640. PubMed ID: 32086051 [TBL] [Abstract][Full Text] [Related]
9. Design, synthesis and evaluation of rhodanine derivatives as aldose reductase inhibitors. Agrawal YP; Agrawal MY; Gupta AK Chem Biol Drug Des; 2015 Feb; 85(2):172-80. PubMed ID: 24903533 [TBL] [Abstract][Full Text] [Related]
10. Binding mode analyses and pharmacophore model development for stilbene derivatives as a novel and competitive class of α-glucosidase inhibitors. Lee Y; Kim S; Kim JY; Arooj M; Kim S; Hwang S; Kim BW; Park KH; Lee KW PLoS One; 2014; 9(1):e85827. PubMed ID: 24465730 [TBL] [Abstract][Full Text] [Related]
13. Nitrophenyl derivatives as aldose reductase inhibitors. Costantino L; Ferrari AM; Gamberini MC; Rastelli G Bioorg Med Chem; 2002 Dec; 10(12):3923-31. PubMed ID: 12413844 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, antidiabetic activity and molecular docking studies of novel aryl benzylidenethiazolidine-2,4-dione based 1,2,3-triazoles. Patnam N; Chevula K; Chennamsetti P; Aleti B; Kotha AK; Manga V Mol Divers; 2024 Jun; 28(3):1551-1563. PubMed ID: 37326778 [TBL] [Abstract][Full Text] [Related]
15. Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase. Wang Z; Ling B; Zhang R; Suo Y; Liu Y; Yu Z; Liu C J Mol Graph Model; 2009 Sep; 28(2):162-9. PubMed ID: 19616461 [TBL] [Abstract][Full Text] [Related]
16. Substituted 2-thioxothiazolidin-4-one derivatives showed protective effects against diabetic cataract via inhibition of aldose reductase. Huang W; Zhang Y; Liang X; Yang L Arch Pharm (Weinheim); 2020 Jun; 353(6):e1900371. PubMed ID: 32237167 [TBL] [Abstract][Full Text] [Related]
17. The crystallographic structure of the aldose reductase-IDD552 complex shows direct proton donation from tyrosine 48. Ruiz F; Hazemann I; Mitschler A; Joachimiak A; Schneider T; Karplus M; Podjarny A Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1347-54. PubMed ID: 15272156 [TBL] [Abstract][Full Text] [Related]
18. Binding mode exploration of LuxR-thiazolidinedione analogues, e-pharmacophore-based virtual screening in the designing of LuxR inhibitors and its biological evaluation. Rajamanikandan S; Jeyakanthan J; Srinivasan P J Biomol Struct Dyn; 2017 Mar; 35(4):897-916. PubMed ID: 27141809 [TBL] [Abstract][Full Text] [Related]
19. Quantitative structure-activity analysis of 5-arylidene-2,4-thiazolidinediones as aldose reductase inhibitors. Sambasivarao SV; Soni LK; Gupta AK; Hanumantharao P; Kaskhedikar SG Bioorg Med Chem Lett; 2006 Feb; 16(3):512-20. PubMed ID: 16297625 [TBL] [Abstract][Full Text] [Related]
20. Exploring the interactional details between aldose reductase (AKR1B1) and 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid through molecular dynamics simulations. Zhan JY; Ma K; Zheng QC; Yang GH; Zhang HX J Biomol Struct Dyn; 2019 Apr; 37(7):1724-1735. PubMed ID: 29671687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]