These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24974177)

  • 1. Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes.
    Baker BH; Martinovic-Weigelt D; Ferrey M; Barber LB; Writer JH; Rosenberry DO; Kiesling RL; Lundy JR; Schoenfuss HL
    Arch Environ Contam Toxicol; 2014 Oct; 67(3):374-88. PubMed ID: 24974177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking Trace Organic Contaminants in On-Site Wastewater-Treatment Discharge with Biological Effects.
    Warren LD; Guyader ME; Kiesling RL; Higgins CP; Schoenfuss HL
    Environ Toxicol Chem; 2021 Nov; 40(11):3193-3204. PubMed ID: 34499771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace organic contaminant (TOrC) mixtures in Minnesota littoral zones: Effects of on-site wastewater treatment system (OWTS) proximity and biological impact.
    Guyader ME; Warren LD; Green E; Bertram R; Proudian AP; Kiesling RL; Schoenfuss HL; Higgins CP
    Sci Total Environ; 2018 Jun; 626():1157-1166. PubMed ID: 29898522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do laboratory species protect endangered species? Interspecies variation in responses to 17β-estradiol, a model endocrine active compound.
    Jorgenson ZG; Buhl K; Bartell SE; Schoenfuss HL
    Arch Environ Contam Toxicol; 2015 Jan; 68(1):204-15. PubMed ID: 25164071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of triclosan and triclocarban, two ubiquitous environmental contaminants, on anatomy, physiology, and behavior of the fathead minnow (Pimephales promelas).
    Schultz MM; Bartell SE; Schoenfuss HL
    Arch Environ Contam Toxicol; 2012 Jul; 63(1):114-24. PubMed ID: 22237462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated approach for identifying priority contaminant in the Great Lakes Basin - Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary areas of concern.
    Li S; Villeneuve DL; Berninger JP; Blackwell BR; Cavallin JE; Hughes MN; Jensen KM; Jorgenson Z; Kahl MD; Schroeder AL; Stevens KE; Thomas LM; Weberg MA; Ankley GT
    Sci Total Environ; 2017 Feb; 579():825-837. PubMed ID: 27866739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes.
    Writer JH; Barber LB; Brown GK; Taylor HE; Kiesling RL; Ferrey ML; Jahns ND; Bartell SE; Schoenfuss HL
    Sci Total Environ; 2010 Dec; 409(1):100-11. PubMed ID: 20970168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritizing potential endocrine active high resolution mass spectrometry (HRMS) features in Minnesota lakewater.
    Guyader ME; Warren LD; Green E; Butt C; Ivosev G; Kiesling RL; Schoenfuss HL; Higgins CP
    Sci Total Environ; 2019 Jun; 670():814-825. PubMed ID: 30921715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.
    Barber LB; Loyo-Rosales JE; Rice CP; Minarik TA; Oskouie AK
    Sci Total Environ; 2015 Jun; 517():195-206. PubMed ID: 25727675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocrine active contaminants in aquatic systems and intersex in common sport fishes.
    Lee Pow CS; Law JM; Kwak TJ; Cope WG; Rice JA; Kullman SW; Aday DD
    Environ Toxicol Chem; 2017 Apr; 36(4):959-968. PubMed ID: 27583571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the effects of historical exposure to endocrine-active compounds on reproductive health and genetic diversity in walleye, a native apex predator, in a large riverine system.
    Miller LM; Bartell SE; Schoenfuss HL
    Arch Environ Contam Toxicol; 2012 May; 62(4):657-71. PubMed ID: 22105469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple lines of evidence for identifying potential hazards to fish from contaminants of emerging concern in Great Lakes tributaries.
    Elliott SM; Gefell DJ; Kiesling RL; Hummel SL; King CK; Christen CH; Kohno S; Schoenfuss HL
    Integr Environ Assess Manag; 2022 Sep; 18(5):1246-1259. PubMed ID: 34850546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the antimicrobial contaminant triclocarban, and co-exposure with the androgen 17β-trenbolone, on reproductive function and ovarian transcriptome of the fathead minnow (Pimephales promelas).
    Villeneuve DL; Jensen KM; Cavallin JE; Durhan EJ; Garcia-Reyero N; Kahl MD; Leino RL; Makynen EA; Wehmas LC; Perkins EJ; Ankley GT
    Environ Toxicol Chem; 2017 Jan; 36(1):231-242. PubMed ID: 27312088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Land Use Contributions to Adverse Biological Effects in a Complex Agricultural and Urban Watershed: A Case Study of the Maumee River.
    Cipoletti N; Jorgenson ZG; Banda JA; Hummel SL; Kohno S; Schoenfuss HL
    Environ Toxicol Chem; 2019 May; 38(5):1035-1051. PubMed ID: 30883853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chemical fractions from an oil sands end-pit lake on reproduction of fathead minnows.
    Morandi G; Wiseman S; Sun C; Martin JW; Giesy JP
    Chemosphere; 2020 Jun; 249():126073. PubMed ID: 32088464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and distribution of hormones and bisphenol A in Laguna Lake, Philippines.
    Sta Ana KM; Espino MP
    Chemosphere; 2020 Oct; 256():127122. PubMed ID: 32470735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction.
    Cavallin JE; Jensen KM; Kahl MD; Villeneuve DL; Lee KE; Schroeder AL; Mayasich J; Eid EP; Nelson KR; Milsk RY; Blackwell BR; Berninger JP; LaLone CA; Blanksma C; Jicha T; Elonen C; Johnson R; Ankley GT
    Environ Toxicol Chem; 2016 Mar; 35(3):702-16. PubMed ID: 26332155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure.
    Thomas LM; Jorgenson ZG; Brigham ME; Choy SJ; Moore JN; Banda JA; Gefell DJ; Minarik TA; Schoenfuss HL
    PLoS One; 2017; 12(9):e0184725. PubMed ID: 28953953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenoestrogen exposure and effects in bluegill from the Reedy River, South Carolina, USA.
    Truman PS; van den Hurk P
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):165-75. PubMed ID: 19488802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental oestrogens cause predation-induced population decline in a freshwater fish.
    Rearick DC; Ward J; Venturelli P; Schoenfuss H
    R Soc Open Sci; 2018 Oct; 5(10):181065. PubMed ID: 30473849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.