BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

693 related articles for article (PubMed ID: 24974178)

  • 1. Reactive oxygen species in normal and tumor stem cells.
    Zhou D; Shao L; Spitz DR
    Adv Cancer Res; 2014; 122():1-67. PubMed ID: 24974178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells.
    Saito S; Lin YC; Tsai MH; Lin CS; Murayama Y; Sato R; Yokoyama KK
    Kaohsiung J Med Sci; 2015 Jun; 31(6):279-86. PubMed ID: 26043406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
    Tan DQ; Suda T
    Antioxid Redox Signal; 2018 Jul; 29(2):149-168. PubMed ID: 28708000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition.
    Wang C; Shao L; Pan C; Ye J; Ding Z; Wu J; Du Q; Ren Y; Zhu C
    Stem Cell Res Ther; 2019 Jun; 10(1):175. PubMed ID: 31196164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem cells and the impact of ROS signaling.
    Bigarella CL; Liang R; Ghaffari S
    Development; 2014 Nov; 141(22):4206-18. PubMed ID: 25371358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.
    Wang K; Zhang T; Dong Q; Nice EC; Huang C; Wei Y
    Cell Death Dis; 2013 Mar; 4(3):e537. PubMed ID: 23492768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment.
    Ludin A; Gur-Cohen S; Golan K; Kaufmann KB; Itkin T; Medaglia C; Lu XJ; Ledergor G; Kollet O; Lapidot T
    Antioxid Redox Signal; 2014 Oct; 21(11):1605-19. PubMed ID: 24762207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness.
    Bao B; Azmi AS; Li Y; Ahmad A; Ali S; Banerjee S; Kong D; Sarkar FH
    Curr Stem Cell Res Ther; 2014 Jan; 9(1):22-35. PubMed ID: 23957937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling.
    Paul MK; Bisht B; Darmawan DO; Chiou R; Ha VL; Wallace WD; Chon AT; Hegab AE; Grogan T; Elashoff DA; Alva-Ornelas JA; Gomperts BN
    Cell Stem Cell; 2014 Aug; 15(2):199-214. PubMed ID: 24953182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radicals and antioxidants in normal physiological functions and human disease.
    Valko M; Leibfritz D; Moncol J; Cronin MT; Mazur M; Telser J
    Int J Biochem Cell Biol; 2007; 39(1):44-84. PubMed ID: 16978905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species and hematopoietic stem cell senescence.
    Shao L; Li H; Pazhanisamy SK; Meng A; Wang Y; Zhou D
    Int J Hematol; 2011 Jul; 94(1):24-32. PubMed ID: 21567162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of reactive oxygen species in the fate of stem cells.
    Chaudhari P; Ye Z; Jang YY
    Antioxid Redox Signal; 2014 Apr; 20(12):1881-90. PubMed ID: 23066813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascorbyl stearate and ionizing radiation potentiate apoptosis through intracellular thiols and oxidative stress in murine T lymphoma cells.
    Mane SD; Kamatham AN
    Chem Biol Interact; 2018 Feb; 281():37-50. PubMed ID: 29273564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress and hypoxia in normal and leukemic stem cells.
    Testa U; Labbaye C; Castelli G; Pelosi E
    Exp Hematol; 2016 Jul; 44(7):540-60. PubMed ID: 27179622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia.
    Morimoto H; Yamamoto T; Miyazaki T; Ogonuki N; Ogura A; Tanaka T; Kanatsu-Shinohara M; Yabe-Nishimura C; Zhang H; Pommier Y; Trumpp A; Shinohara T
    Genes Dev; 2021 Feb; 35(3-4):250-260. PubMed ID: 33446567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidants inhibit cell senescence and preserve stemness of adipose tissue-derived stem cells by reducing ROS generation during long-term in vitro expansion.
    Liao N; Shi Y; Zhang C; Zheng Y; Wang Y; Zhao B; Zeng Y; Liu X; Liu J
    Stem Cell Res Ther; 2019 Oct; 10(1):306. PubMed ID: 31623678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species regulate the quiescence of CD34-positive cells derived from human embryonic stem cells.
    Song SH; Kim K; Park JJ; Min KH; Suh W
    Cardiovasc Res; 2014 Jul; 103(1):147-55. PubMed ID: 24747991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation.
    Kim JH; Kim SH; Song SY; Kim WS; Song SU; Yi T; Jeon MS; Chung HM; Xia Y; Sung JH
    Cell Biol Int; 2014 Jan; 38(1):32-40. PubMed ID: 23956071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-Induced Mesenchymal Stromal Cells Exhibit an Enhanced Therapeutic Effect on Radiation-Induced Lung Injury in Mice due to an Increased Proliferation Potential and Enhanced Antioxidant Ability.
    Li B; Li C; Zhu M; Zhang Y; Du J; Xu Y; Liu B; Gao F; Liu H; Cai J; Yang Y
    Cell Physiol Biochem; 2017; 44(4):1295-1310. PubMed ID: 29183009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.