BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24974204)

  • 1. Learning protein-DNA interaction landscapes by integrating experimental data through computational models.
    Zhong J; Wasson T; Hartemink AJ
    Bioinformatics; 2014 Oct; 30(20):2868-74. PubMed ID: 24974204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational modeling of in vivo and in vitro protein-DNA interactions by multiple instance learning.
    Gao Z; Ruan J
    Bioinformatics; 2017 Jul; 33(14):2097-2105. PubMed ID: 28334224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RoboCOP: jointly computing chromatin occupancy profiles for numerous factors from chromatin accessibility data.
    Mitra S; Zhong J; Tran TQ; MacAlpine DM; Hartemink AJ
    Nucleic Acids Res; 2021 Aug; 49(14):7925-7938. PubMed ID: 34255854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative models of the mechanisms that control genome-wide patterns of animal transcription factor binding.
    Kaplan T; Biggin MD
    Methods Cell Biol; 2012; 110():263-83. PubMed ID: 22482953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping nucleosome positions using DNase-seq.
    Zhong J; Luo K; Winter PS; Crawford GE; Iversen ES; Hartemink AJ
    Genome Res; 2016 Mar; 26(3):351-64. PubMed ID: 26772197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing direct versus indirect transcription factor-DNA interactions.
    Gordân R; Hartemink AJ; Bulyk ML
    Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient inference for sparse latent variable models of transcriptional regulation.
    Dai Z; Iqbal M; Lawrence ND; Rattray M
    Bioinformatics; 2017 Dec; 33(23):3776-3783. PubMed ID: 28961802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SignalSpider: probabilistic pattern discovery on multiple normalized ChIP-Seq signal profiles.
    Wong KC; Li Y; Peng C; Zhang Z
    Bioinformatics; 2015 Jan; 31(1):17-24. PubMed ID: 25192742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating nucleosomes into thermodynamic models of transcription regulation.
    Raveh-Sadka T; Levo M; Segal E
    Genome Res; 2009 Aug; 19(8):1480-96. PubMed ID: 19451592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling interactions between adjacent nucleosomes improves genome-wide predictions of nucleosome occupancy.
    Lubliner S; Segal E
    Bioinformatics; 2009 Jun; 25(12):i348-55. PubMed ID: 19478009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting protein-DNA binding free energy change upon missense mutations using modified MM/PBSA approach: SAMPDI webserver.
    Peng Y; Sun L; Jia Z; Li L; Alexov E
    Bioinformatics; 2018 Mar; 34(5):779-786. PubMed ID: 29091991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional interaction-assisted identification of dynamic nucleosome positioning.
    Dai Z; Dai X; Xiang Q; Feng J; Deng Y; Wang J; He C
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S31. PubMed ID: 19208132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RoboCOP: Multivariate State Space Model Integrating Epigenomic Accessibility Data to Elucidate Genome-Wide Chromatin Occupancy.
    Mitra S; Zhong J; MacAlpine DM; Hartemink AJ
    Res Comput Mol Biol; 2020 May; 12074():136-151. PubMed ID: 34386808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction and characterization of cell-type-specific and shared binding sites.
    Zhang Q; Teng P; Wang S; He Y; Cui Z; Guo Z; Liu Y; Yuan C; Liu Q; Huang DS
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36484687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of context-dependent motifs by contrasting ChIP binding data.
    Mason MJ; Plath K; Zhou Q
    Bioinformatics; 2010 Nov; 26(22):2826-32. PubMed ID: 20870645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution.
    Zhou X; Blocker AW; Airoldi EM; O'Shea EK
    Elife; 2016 Sep; 5():. PubMed ID: 27623011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.