These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24974254)

  • 21. Increasing task precision demands reveals that the reach and grasp remain subject to different perception-action constraints in 12-month-old human infants.
    Karl JM; Slack BM; Wilson AM; Wilson CA; Bertoli ME
    Infant Behav Dev; 2019 Nov; 57():101382. PubMed ID: 31580995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhythmic movement in Parkinson's disease: effects of visual feedback and medication state.
    Levy-Tzedek S; Krebs HI; Arle JE; Shils JL; Poizner H
    Exp Brain Res; 2011 Jun; 211(2):277-86. PubMed ID: 21526337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A test of motor (not executive) planning in developmental coordination disorder and autism.
    van Swieten LM; van Bergen E; Williams JH; Wilson AD; Plumb MS; Kent SW; Mon-Williams MA
    J Exp Psychol Hum Percept Perform; 2010 Apr; 36(2):493-9. PubMed ID: 20364932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor control of downward object-transport movements with precision grip by object weight.
    Yamamoto S; Shiraki Y; Uehara S; Kushiro K
    Somatosens Mot Res; 2016 Jun; 33(2):130-6. PubMed ID: 27430351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Programming of left hand exploits task set but that of right hand depends on recent history.
    Tang R; Zhu H
    Exp Brain Res; 2017 Jul; 235(7):2215-2224. PubMed ID: 28451736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Error correction and spatial generalization in human grasp control.
    Cesanek E; Domini F
    Neuropsychologia; 2017 Nov; 106():112-122. PubMed ID: 28958908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How action performance affects object perception.
    Costantini M; Tommasi L; Sinigaglia C
    Exp Brain Res; 2019 Jul; 237(7):1805-1810. PubMed ID: 31053894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative model of transport-aperture coordination during reach-to-grasp movements.
    Rand MK; Shimansky YP; Hossain AB; Stelmach GE
    Exp Brain Res; 2008 Jun; 188(2):263-74. PubMed ID: 18438652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viewing geometry determines the contribution of binocular vision to the online control of grasping.
    Keefe BD; Watt SJ
    Exp Brain Res; 2017 Dec; 235(12):3631-3643. PubMed ID: 28900689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The destination defines the journey: an examination of the kinematics of hand-to-mouth movements.
    Flindall JW; Gonzalez CL
    J Neurophysiol; 2016 Nov; 116(5):2105-2113. PubMed ID: 27512020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object.
    Mason CR; Theverapperuma LS; Hendrix CM; Ebner TJ
    J Neurophysiol; 2004 Jun; 91(6):2826-37. PubMed ID: 14762155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.
    Coats R; Bingham GP; Mon-Williams M
    Exp Brain Res; 2008 Aug; 189(2):211-20. PubMed ID: 18493753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of vision in aperture closure control during reach-to-grasp movements.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2007 Aug; 181(3):447-60. PubMed ID: 17476491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-obstructing 3D depth cues influence reach-to-grasp kinematics.
    Worssam CJ; Meade LC; Connolly JD
    Exp Brain Res; 2015 Feb; 233(2):385-96. PubMed ID: 25311388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model of the coupling between grip aperture and hand transport during human prehension.
    Hu Y; Osu R; Okada M; Goodale MA; Kawato M
    Exp Brain Res; 2005 Nov; 167(2):301-4. PubMed ID: 16217646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grasping an object naturally or with a tool: are these tasks guided by a common motor representation?
    Gentilucci M; Roy AC; Stefanini S
    Exp Brain Res; 2004 Aug; 157(4):496-506. PubMed ID: 15007584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Delayed visual feedback affects both manual tracking and grip force control when transporting a handheld object.
    Sarlegna FR; Baud-Bovy G; Danion F
    J Neurophysiol; 2010 Aug; 104(2):641-53. PubMed ID: 20538774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-related deficits in bilateral motor synergies and force coordination.
    Kang N; Roberts LM; Aziz C; Cauraugh JH
    BMC Geriatr; 2019 Oct; 19(1):287. PubMed ID: 31651243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of stimulus color on the control of reaching-grasping movements.
    Gentilucci M; Benuzzi F; Bertolani L; Gangitano M
    Exp Brain Res; 2001 Mar; 137(1):36-44. PubMed ID: 11310170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.