BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24974280)

  • 1. Molecular characterization of a novel thermal stable reductase capable of decoloration of both azo and triphenylmethane dyes.
    Gao F; Ding H; Shao L; Xu X; Zhao Y
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):255-67. PubMed ID: 24974280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain.
    Ren S; Guo J; Zeng G; Sun G
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1316-21. PubMed ID: 16622679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase.
    Kim MH; Kim Y; Park HJ; Lee JS; Kwak SN; Jung WH; Lee SG; Kim D; Lee YC; Oh TK
    J Biol Chem; 2008 Nov; 283(46):31981-90. PubMed ID: 18782772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional display of triphenylmethane reductase for dye removal on the surface of Escherichia coli using N-terminal domain of ice nucleation protein.
    Gao F; Ding H; Feng Z; Liu D; Zhao Y
    Bioresour Technol; 2014 Oct; 169():181-187. PubMed ID: 25058292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a Novel Thermostable Oligopeptidase from Geobacillus thermoleovorans DSM 15325.
    Jasilionis A; Kuisiene N
    J Microbiol Biotechnol; 2015 Jul; 25(7):1070-83. PubMed ID: 25791847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A self-sufficient system for removal of synthetic dye by coupling of spore-displayed triphenylmethane reductase and glucose 1-dehydrogenase.
    Gao F; Ding H; Xu X; Zhao Y
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21319-21326. PubMed ID: 27502455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus.
    Sugiura W; Yoda T; Matsuba T; Tanaka Y; Suzuki Y
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1655-65. PubMed ID: 16861800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli.
    Jang MS; Lee YM; Kim CH; Lee JH; Kang DW; Kim SJ; Lee YC
    Appl Environ Microbiol; 2005 Dec; 71(12):7955-60. PubMed ID: 16332773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IncP-1-beta plasmid pGNB1 isolated from a bacterial community from a wastewater treatment plant mediates decolorization of triphenylmethane dyes.
    Schlüter A; Krahn I; Kollin F; Bönemann G; Stiens M; Szczepanowski R; Schneiker S; Pühler A
    Appl Environ Microbiol; 2007 Oct; 73(20):6345-50. PubMed ID: 17675426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp. triphenylmethane reductase in transgenic Arabidopsis.
    Fu XY; Zhao W; Xiong AS; Tian YS; Zhu B; Peng RH; Yao QH
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1799-806. PubMed ID: 22573270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability.
    Fang Z; Li T; Wang Q; Zhang X; Peng H; Fang W; Hong Y; Ge H; Xiao Y
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1103-10. PubMed ID: 20963410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24.
    Blümel S; Stolz A
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):186-90. PubMed ID: 12719939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications.
    Santos A; Mendes S; Brissos V; Martins LO
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2053-65. PubMed ID: 23820555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a thermally stable and organic solvent-adaptative NAD+ -dependent formate dehydrogenase from Bacillus sp. F1.
    Ding HT; Liu DF; Li ZL; Du YQ; Xu XH; Zhao YH
    J Appl Microbiol; 2011 Nov; 111(5):1075-85. PubMed ID: 21848698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic degradation of sulphonated azo dye using purified azoreductase from facultative Klebsiella pneumoniae.
    Dixit S; Garg S
    Folia Microbiol (Praha); 2021 Feb; 66(1):79-85. PubMed ID: 32946071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Characterization of a Novel Thermostable GDSL-Type Lipase from
    Jo E; Kim J; Lee A; Moon K; Cha J
    J Microbiol Biotechnol; 2021 Mar; 31(3):483-491. PubMed ID: 33622993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM.
    Ebrahimpour A; Rahman RN; Basri M; Salleh AB
    Bioresour Technol; 2011 Jul; 102(13):6972-81. PubMed ID: 21531550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decolorizing activity of malachite green and its mechanisms involved in dye biodegradation by Achromobacter xylosoxidans MG1.
    Wang J; Qiao M; Wei K; Ding J; Liu Z; Zhang KQ; Huang X
    J Mol Microbiol Biotechnol; 2011; 20(4):220-7. PubMed ID: 21865764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp.
    Gill PK; Arora DS; Chander M
    J Ind Microbiol Biotechnol; 2002 Apr; 28(4):201-3. PubMed ID: 11986919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and identification of lipase producing thermophilic Geobacillus sp. SBS-4S: cloning and characterization of the lipase.
    Tayyab M; Rashid N; Akhtar M
    J Biosci Bioeng; 2011 Mar; 111(3):272-8. PubMed ID: 21185780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.