These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 24974295)
21. Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis. Wu Y; Xing D; Luo S; Tang Y; Chen Q Cancer Lett; 2006 Apr; 235(2):239-47. PubMed ID: 15958279 [TBL] [Abstract][Full Text] [Related]
22. Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Mahajan NP; Harrison-Shostak DC; Michaux J; Herman B Chem Biol; 1999 Jun; 6(6):401-9. PubMed ID: 10375546 [TBL] [Abstract][Full Text] [Related]
23. Development of a method to evaluate caspase-3 activity in a single cell using a nanoneedle and a fluorescent probe. Kihara T; Nakamura C; Suzuki M; Han SW; Fukazawa K; Ishihara K; Miyake J Biosens Bioelectron; 2009 Sep; 25(1):22-7. PubMed ID: 19553098 [TBL] [Abstract][Full Text] [Related]
24. Simple and tunable Förster resonance energy transfer-based bioprobes for high-throughput monitoring of caspase-3 activation in living cells by using flow cytometry. Suzuki M; Tanaka S; Ito Y; Inoue M; Sakai T; Nishigaki K Biochim Biophys Acta; 2012 Feb; 1823(2):215-26. PubMed ID: 21791227 [TBL] [Abstract][Full Text] [Related]
25. Single fluorescent probe distinguishes hydrogen peroxide and nitric oxide in cell imaging. Yuan L; Lin W; Zhu S; Zheng K; He L Methods Enzymol; 2013; 526():83-106. PubMed ID: 23791095 [TBL] [Abstract][Full Text] [Related]
26. Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Lossi L; Cocito C; Alasia S; Merighi A Mol Neurodegener; 2016 Apr; 11():34. PubMed ID: 27122136 [TBL] [Abstract][Full Text] [Related]
27. Simultaneous imaging of initiator/effector caspase activity and mitochondrial membrane potential during cell death in living HeLa cells. Kawai H; Suzuki T; Kobayashi T; Mizuguchi H; Hayakawa T; Kawanishi T Biochim Biophys Acta; 2004 Aug; 1693(2):101-10. PubMed ID: 15313012 [TBL] [Abstract][Full Text] [Related]
28. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Zhang J; Wang X; Cui W; Wang W; Zhang H; Liu L; Zhang Z; Li Z; Ying G; Zhang N; Li B Nat Commun; 2013; 4():2157. PubMed ID: 23857461 [TBL] [Abstract][Full Text] [Related]
29. Recent Advances in Development of Genetically Encoded Fluorescent Sensors. Sanford L; Palmer A Methods Enzymol; 2017; 589():1-49. PubMed ID: 28336060 [TBL] [Abstract][Full Text] [Related]
30. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Miyawaki A Annu Rev Biochem; 2011; 80():357-73. PubMed ID: 21529159 [TBL] [Abstract][Full Text] [Related]
31. Imaging of caspase-3 activation in HeLa cells stimulated with etoposide using a novel fluorescent probe. Mizukami S; Kikuchi K; Higuchi T; Urano Y; Mashima T; Tsuruo T; Nagano T FEBS Lett; 1999 Jun; 453(3):356-60. PubMed ID: 10405175 [TBL] [Abstract][Full Text] [Related]
32. Engineering FRET constructs using CFP and YFP. Shimozono S; Miyawaki A Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471 [TBL] [Abstract][Full Text] [Related]
33. [Genetically encoded FRET-pair on the basis of terbium-binding peptide and red fluorescent protein]. Arslanbaeva LR; Zherdeva VV; Ivashina TV; Vinokurov LM; Rusanov AL; Savitskiĭ AP Prikl Biokhim Mikrobiol; 2010; 46(2):166-71. PubMed ID: 20391759 [TBL] [Abstract][Full Text] [Related]
34. Recent advances using green and red fluorescent protein variants. Müller-Taubenberger A; Anderson KI Appl Microbiol Biotechnol; 2007 Nov; 77(1):1-12. PubMed ID: 17704916 [TBL] [Abstract][Full Text] [Related]
35. Lifetime imaging of FRET between red fluorescent proteins. Rusanov AL; Ivashina TV; Vinokurov LM; Fiks II; Orlova AG; Turchin IV; Meerovich IG; Zherdeva VV; Savitsky AP J Biophotonics; 2010 Dec; 3(12):774-83. PubMed ID: 20925107 [TBL] [Abstract][Full Text] [Related]
36. Fluorescence imaging using a fluorescent protein with a large Stokes shift. Kogure T; Kawano H; Abe Y; Miyawaki A Methods; 2008 Jul; 45(3):223-6. PubMed ID: 18586106 [TBL] [Abstract][Full Text] [Related]
37. Discovery of a highly selective caspase-3 substrate for imaging live cells. Vickers CJ; González-Páez GE; Wolan DW ACS Chem Biol; 2014 Oct; 9(10):2199-203. PubMed ID: 25133295 [TBL] [Abstract][Full Text] [Related]
38. FRET-based imaging of Rac and Cdc42 activation during Fc-receptor-mediated phagocytosis in macrophages. Hoppe AD Methods Mol Biol; 2012; 827():235-51. PubMed ID: 22144279 [TBL] [Abstract][Full Text] [Related]
39. FRET-based sensor for imaging chromium(III) in living cells. Zhou Z; Yu M; Yang H; Huang K; Li F; Yi T; Huang C Chem Commun (Camb); 2008 Aug; (29):3387-9. PubMed ID: 18633498 [TBL] [Abstract][Full Text] [Related]
40. Caspase-3 sensitive signaling in vivo in apoptotic HeLa cells by chemically engineered intramolecular fluorescence resonance energy transfer mutants of green fluorescent protein. Suzuki M; Ito Y; Sakata I; Sakai T; Husimi Y; Douglas KT Biochem Biophys Res Commun; 2005 May; 330(2):454-60. PubMed ID: 15796904 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]