BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24974365)

  • 1. Anatomical, molecular and pathological consideration of the circumventricular organs.
    Szathmari A; Jouvet A; Mottolese C; Champier J; Fèvre Montange M
    Neurochirurgie; 2015; 61(2-3):90-100. PubMed ID: 24974365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors.
    Szathmari A; Champier J; Ghersi-Egea JF; Jouvet A; Watrin C; Wierinckx A; Fèvre Montange M
    Neuropathology; 2013 Feb; 33(1):17-29. PubMed ID: 22537279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The circumventricular organs.
    Kaur C; Ling EA
    Histol Histopathol; 2017 Sep; 32(9):879-892. PubMed ID: 28177105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous occurrence of aquaporin-4 in the ependyma and in the circumventricular organs in rat and chicken.
    Goren O; Adorján I; Kálmán M
    Anat Embryol (Berl); 2006 Mar; 211(2):155-72. PubMed ID: 16416308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origins of the circumventricular organs.
    Kiecker C
    J Anat; 2018 Apr; 232(4):540-553. PubMed ID: 29280147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy.
    Horsburgh A; Massoud TF
    Surg Radiol Anat; 2013 May; 35(4):343-9. PubMed ID: 23247732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Circumventricular Organs in the Mirror of Zebrafish Enhancer-Trap Transgenics.
    García-Lecea M; Gasanov E; Jedrychowska J; Kondrychyn I; Teh C; You MS; Korzh V
    Front Neuroanat; 2017; 11():114. PubMed ID: 29375325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoptosis and necrosis in the circumventricular organs after experimental subarachnoid hemorrhage as detected with annexin V and caspase 3 immunostaining.
    Edebali N; Tekin IÖ; Açıkgöz B; Açıkgöz S; Barut F; Sevinç N; Sümbüloğlu V
    Neurol Res; 2014 Dec; 36(12):1114-20. PubMed ID: 25137492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of periodic acid-thiocarbohydrazide-silver protein-physical development (PA-TCH-SP-PD) procedure for the histochemical detection of neutral carbohydrates in the circumventricular organs of the rat.
    Ueda T; Fujimori O; Yamada K
    Okajimas Folia Anat Jpn; 1994 Dec; 71(5):325-33. PubMed ID: 7898857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efferent projections from the periventricular and medial parvicellular subnuclei of the hypothalamic paraventricular nucleus to circumventricular organs of the rat: a Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study.
    Larsen PJ; Møller M; Mikkelsen JD
    J Comp Neurol; 1991 Apr; 306(3):462-79. PubMed ID: 1713926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey of occurrence of about seventeen circumventricular organs in brains of various vertebrates with special reference to lower groups.
    Tsuneki K
    J Hirnforsch; 1986; 27(4):441-70. PubMed ID: 3760554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory circumventricular organs and brain homeostatic pathways.
    Johnson AK; Gross PM
    FASEB J; 1993 May; 7(8):678-86. PubMed ID: 8500693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of immunoreactive prolactin in ependyma and circumventricular organs of rat brain.
    Thompson SA
    Cell Tissue Res; 1982; 225(1):79-93. PubMed ID: 7116429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective distribution of GLUT3-expressing nerve fibers in the lamina terminalis among the circumventricular organs of mice.
    Iwanaga T; Konno K; Watanabe M
    Biomed Res; 2019; 40(5):207-214. PubMed ID: 31597906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical localization of catechol-O-methyltransferase in circumventricular organs of the rat: potential variations in the blood-brain barrier to native catechols.
    Kaplan GP; Hartman BK; Creveling CR
    Brain Res; 1981 Dec; 229(2):323-35. PubMed ID: 7030456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain.
    Morita S; Furube E; Mannari T; Okuda H; Tatsumi K; Wanaka A; Miyata S
    Cell Tissue Res; 2015 Mar; 359(3):865-84. PubMed ID: 25573819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular matrix components mark the territories of circumventricular organs.
    Pócsai K; Kálmán M
    Neurosci Lett; 2014 Apr; 566():36-41. PubMed ID: 24561092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in pericytic expression of NG2 and PDGFRB and vascular permeability in the sensory circumventricular organs of adult mouse by osmotic stimulation.
    Morita S; Hourai A; Miyata S
    Cell Biochem Funct; 2014 Jan; 32(1):51-61. PubMed ID: 23629811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The circumventricular organs: an atlas of comparative anatomy and vascularization.
    Duvernoy HM; Risold PY
    Brain Res Rev; 2007 Nov; 56(1):119-47. PubMed ID: 17659349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salient brain entities labelled in P2rx7-EGFP reporter mouse embryos include the septum, roof plate glial specializations and circumventricular ependymal organs.
    Ortega F; Gomez-Villafuertes R; Benito-León M; Martínez de la Torre M; Olivos-Oré LA; Arribas-Blazquez M; Gomez-Gaviro MV; Azcorra A; Desco M; Artalejo AR; Puelles L; Miras-Portugal MT
    Brain Struct Funct; 2021 Apr; 226(3):715-741. PubMed ID: 33427974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.