These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 24974457)
21. Fragment Profiling Approach to Inhibitors of the Orphan M. tuberculosis P450 CYP144A1. Kavanagh ME; Chenge J; Zoufir A; McLean KJ; Coyne AG; Bender A; Munro AW; Abell C Biochemistry; 2017 Mar; 56(11):1559-1572. PubMed ID: 28169518 [TBL] [Abstract][Full Text] [Related]
22. Mycobacterium tuberculosis Low Molecular Weight Phosphatases (MPtpA and MPtpB): From Biological Insight to Inhibitors. Fanzani L; Porta F; Meneghetti F; Villa S; Gelain A; Lucarelli AP; Parisini E Curr Med Chem; 2015; 22(27):3110-32. PubMed ID: 26264920 [TBL] [Abstract][Full Text] [Related]
23. The preponderance of P450s in the Mycobacterium tuberculosis genome. McLean KJ; Clift D; Lewis DG; Sabri M; Balding PR; Sutcliffe MJ; Leys D; Munro AW Trends Microbiol; 2006 May; 14(5):220-8. PubMed ID: 16581251 [TBL] [Abstract][Full Text] [Related]
24. More than cholesterol catabolism: regulatory vulnerabilities in Mycobacterium tuberculosis. Bonds AC; Sampson NS Curr Opin Chem Biol; 2018 Jun; 44():39-46. PubMed ID: 29906645 [TBL] [Abstract][Full Text] [Related]
25. Design, synthesis and evaluation against Mycobacterium tuberculosis of azole piperazine derivatives as dicyclotyrosine (cYY) mimics. El-Wahab HAAA; Accietto M; Marino LB; McLean KJ; Levy CW; Abdel-Rahman HM; El-Gendy MA; Munro AW; Aboraia AS; Simons C Bioorg Med Chem; 2018 Jan; 26(1):161-176. PubMed ID: 29183661 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of Luminogenic Substrates as Probe Substrates for Bacterial Cytochrome P450 Enzymes: Application to Ortega Ugalde S; Ma D; Cali JJ; Commandeur JNM SLAS Discov; 2019 Aug; 24(7):745-754. PubMed ID: 31208248 [TBL] [Abstract][Full Text] [Related]
27. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis. John SF; Aniemeke E; Ha NP; Chong CR; Gu P; Zhou J; Zhang Y; Graviss EA; Liu JO; Olaleye OA Tuberculosis (Edinb); 2016 Dec; 101S():S73-S77. PubMed ID: 27856197 [TBL] [Abstract][Full Text] [Related]
28. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Bhat ZS; Rather MA; Maqbool M; Ahmad Z Biomed Pharmacother; 2018 Jul; 103():1733-1747. PubMed ID: 29864964 [TBL] [Abstract][Full Text] [Related]
29. Mycobacterium tuberculosis-Secreted Tyrosine Phosphatases as Targets Against Tuberculosis: Exploring Natural Sources in Searching for New Drugs. Mascarello A; Chiaradia-Delatorre LD; Mori M; Terenzi H; Botta B Curr Pharm Des; 2016; 22(12):1561-9. PubMed ID: 26759082 [TBL] [Abstract][Full Text] [Related]
30. Discovery of novel acetohydroxyacid synthase inhibitors as active agents against Mycobacterium tuberculosis by virtual screening and bioassay. Wang D; Zhu X; Cui C; Dong M; Jiang H; Li Z; Liu Z; Zhu W; Wang JG J Chem Inf Model; 2013 Feb; 53(2):343-53. PubMed ID: 23316686 [TBL] [Abstract][Full Text] [Related]
31. A comparison of steroid and lipid binding cytochrome P450s from Mycobacterium marinum and Mycobacterium tuberculosis. Child SA; Ghith A; Bruning JB; Bell SG J Inorg Biochem; 2020 Aug; 209():111116. PubMed ID: 32473484 [TBL] [Abstract][Full Text] [Related]
32. Validation of Mycobacterium tuberculosis dihydroneopterin aldolase as a molecular target for anti-tuberculosis drug development. Falcão VC; Villela AD; Rodrigues-Junior VS; Pissinate K; Eichler P; Pinto AF; Basso LA; Santos DS; Bizarro CV Biochem Biophys Res Commun; 2017 Apr; 485(4):814-819. PubMed ID: 28257847 [TBL] [Abstract][Full Text] [Related]
33. Structure Based Discovery of Inhibitors of CYP125 and CYP142 from Mycobacterium tuberculosis. Katariya MM; Snee M; Tunnicliffe RB; Kavanagh ME; Boshoff HIM; Amadi CN; Levy CW; Munro AW; Abell C; Leys D; Coyne AG; McLean KJ Chemistry; 2023 May; 29(29):e202203868. PubMed ID: 36912255 [TBL] [Abstract][Full Text] [Related]
34. Comparative protein modeling of methionine S-adenosyltransferase (MAT) enzyme from Mycobacterium tuberculosis: a potential target for antituberculosis drug discovery. Khedkar SA; Malde AK; Coutinho EC J Mol Graph Model; 2005 Jan; 23(4):355-66. PubMed ID: 15670956 [TBL] [Abstract][Full Text] [Related]
35. Identification of Missing Carbon Fixation Enzymes as Potential Drug Targets in Mycobacterium Tuberculosis. Katiyar A; Singh H; Azad KK J Integr Bioinform; 2018 Jul; 15(3):. PubMed ID: 30218604 [TBL] [Abstract][Full Text] [Related]
36. Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in McNeil MB; Cook GM Antimicrob Agents Chemother; 2019 Aug; 63(8):. PubMed ID: 31160289 [TBL] [Abstract][Full Text] [Related]
37. Development of potent chemical antituberculosis agents targeting Mycobacterium tuberculosis acetohydroxyacid synthase. Jung IP; Ha NR; Lee SC; Ryoo SW; Yoon MY Int J Antimicrob Agents; 2016 Sep; 48(3):247-58. PubMed ID: 27451857 [TBL] [Abstract][Full Text] [Related]
38. Identification and synthesis of novel inhibitors of mycobacterium ATP synthase. Surase YB; Samby K; Amale SR; Sood R; Purnapatre KP; Pareek PK; Das B; Nanda K; Kumar S; Verma AK Bioorg Med Chem Lett; 2017 Aug; 27(15):3454-3459. PubMed ID: 28587823 [TBL] [Abstract][Full Text] [Related]
39. Novel targets and inhibitors of the Harikishore A; Mathiyazakan V; Pethe K; Grüber G Expert Opin Drug Discov; 2023; 18(8):917-927. PubMed ID: 37332221 [TBL] [Abstract][Full Text] [Related]