These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 24974630)
1. In vitro assessment of commercial sunscreens available in Latin America. Castanedo-Cázares JP; Martínez-Rosales K; Hernández-Blanco D; Valdés-Rodríguez G; Torres-Alvarez B Invest Clin; 2014 Jun; 55(2):142-54. PubMed ID: 24974630 [TBL] [Abstract][Full Text] [Related]
2. Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. Hojerová J; Medovcíková A; Mikula M Int J Pharm; 2011 Apr; 408(1-2):27-38. PubMed ID: 21277959 [TBL] [Abstract][Full Text] [Related]
3. New noninvasive approach assessing in vivo sun protection factor (SPF) using diffuse reflectance spectroscopy (DRS) and in vitro transmission. Ruvolo Junior E; Kollias N; Cole C Photodermatol Photoimmunol Photomed; 2014 Aug; 30(4):202-11. PubMed ID: 24417335 [TBL] [Abstract][Full Text] [Related]
4. Broad-spectrum sunscreens provide better protection from solar ultraviolet-simulated radiation and natural sunlight-induced immunosuppression in human beings. Moyal DD; Fourtanier AM J Am Acad Dermatol; 2008 May; 58(5 Suppl 2):S149-54. PubMed ID: 18410801 [TBL] [Abstract][Full Text] [Related]
5. Quartz plates for determining sun protection in vitro and testing photostability of commercial sunscreens. Akrman J; Kubác L; Bendová H; Jírová D; Kejlová K Int J Cosmet Sci; 2009 Apr; 31(2):119-29. PubMed ID: 19175432 [TBL] [Abstract][Full Text] [Related]
6. Sun protection factors: world wide confusion. Osterwalder U; Herzog B Br J Dermatol; 2009 Nov; 161 Suppl 3():13-24. PubMed ID: 19775352 [TBL] [Abstract][Full Text] [Related]
7. In vitro assessment of the broad-spectrum ultraviolet protection of sunscreen products. Diffey BL; Tanner PR; Matts PJ; Nash JF J Am Acad Dermatol; 2000 Dec; 43(6):1024-35. PubMed ID: 11100018 [TBL] [Abstract][Full Text] [Related]
8. Suboptimal UVA attenuation by broad spectrum sunscreens under outdoor solar conditions contributes to lifetime UVA burden. Coelho SG; Rua D; Miller SA; Agrawal A Photodermatol Photoimmunol Photomed; 2020 Jan; 36(1):42-52. PubMed ID: 31376300 [TBL] [Abstract][Full Text] [Related]
9. [Effects of sunscreening agents and reactions with ultraviolet radiation]. Bredholt K; Christensen T; Hannevik M; Johnsen B; Seim J; Reitan JB Tidsskr Nor Laegeforen; 1998 Jun; 118(17):2640-5. PubMed ID: 9673515 [TBL] [Abstract][Full Text] [Related]
10. The Influence of Short-Wave and Long-Wave Radiation Spectrum on the Photostability of Sunscreens. Garbe B; Kockott D; Werner M; Theek C; Heinrich U; Braun N Skin Pharmacol Physiol; 2020; 33(2):77-85. PubMed ID: 31982879 [TBL] [Abstract][Full Text] [Related]
11. In vivo measurement of the photostability of sunscreen products using diffuse reflectance spectroscopy. Moyal D; Refrégier JL; Chardon A Photodermatol Photoimmunol Photomed; 2002 Feb; 18(1):14-22. PubMed ID: 11982917 [TBL] [Abstract][Full Text] [Related]
12. Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens. Borase HP; Patil CD; Salunkhe RB; Suryawanshi RK; Salunke BK; Patil SV Int J Cosmet Sci; 2014 Dec; 36(6):571-8. PubMed ID: 25124731 [TBL] [Abstract][Full Text] [Related]
13. Laboratory testing of sunscreens on the US market finds lower in vitro SPF values than on labels and even less UVA protection. Andrews DQ; Rauhe K; Burns C; Spilman E; Temkin AM; Perrone-Gray S; Naidenko OV; Leiba N Photodermatol Photoimmunol Photomed; 2022 May; 38(3):224-232. PubMed ID: 34601762 [TBL] [Abstract][Full Text] [Related]
14. Sunscreens containing the broad-spectrum UVA absorber, Mexoryl SX, prevent the cutaneous detrimental effects of UV exposure: a review of clinical study results. Fourtanier A; Moyal D; Seité S Photodermatol Photoimmunol Photomed; 2008 Aug; 24(4):164-74. PubMed ID: 18717957 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Diffuse Reflectance Spectroscopy: Non-Erythemal in vivo Testing of Sun Protection Factor. Rohr M; Ernst N; Schrader A Skin Pharmacol Physiol; 2018; 31(4):220-228. PubMed ID: 29791917 [TBL] [Abstract][Full Text] [Related]
16. Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions. Jarzycka A; Lewińska A; Gancarz R; Wilk KA J Photochem Photobiol B; 2013 Nov; 128():50-7. PubMed ID: 24007865 [TBL] [Abstract][Full Text] [Related]
17. High-SPF sunscreens (SPF ≥ 70) may provide ultraviolet protection above minimal recommended levels by adequately compensating for lower sunscreen user application amounts. Ou-Yang H; Stanfield J; Cole C; Appa Y; Rigel D J Am Acad Dermatol; 2012 Dec; 67(6):1220-7. PubMed ID: 22463921 [TBL] [Abstract][Full Text] [Related]
18. Influence of application amount on sunscreen photodegradation in in vitro sun protection factor evaluation: proposal of a skin-mimicking substrate. Miura Y; Hirao T; Hatao M Photochem Photobiol; 2012; 88(2):475-82. PubMed ID: 22077193 [TBL] [Abstract][Full Text] [Related]
19. Commentary on 'UVB-SPF': the SPF labels of sunscreen products convey more than just UVB protection. Sayre RM; Dowdy JC; Lott DL; Marlowe E Photodermatol Photoimmunol Photomed; 2008 Aug; 24(4):218-20. PubMed ID: 18717963 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of sunscreen products using a reconstructed skin model exposed to simulated daily ultraviolet radiation: relevance of filtration profile and SPF value for daily photoprotection. Lejeune F; Christiaens F; Bernerd F Photodermatol Photoimmunol Photomed; 2008 Oct; 24(5):249-55. PubMed ID: 18811866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]