These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24975009)

  • 1. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.
    Ocon JD; Kim JW; Abrenica GH; Lee JK; Lee J
    Phys Chem Chem Phys; 2014 Nov; 16(41):22487-94. PubMed ID: 24975009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled electrochemical etching of nanoporous Si anodes and its discharge behavior in alkaline Si-air batteries.
    Park DW; Kim S; Ocon JD; Abrenica GH; Lee JK; Lee J
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3126-32. PubMed ID: 25594400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discharge performance of solid-state oxygen shuttle metal-air battery using Ca-stabilized ZrO2 electrolyte.
    Inoishi A; Kim HH; Sakai T; Ju YW; Ida S; Ishihara T
    ChemSusChem; 2015 Apr; 8(7):1264-9. PubMed ID: 25727525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin-film silicon for flexible metal-air batteries.
    Garamoun A; Schubert MB; Werner JH
    ChemSusChem; 2014 Dec; 7(12):3272-4. PubMed ID: 25251223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic Mechanisms of Mg Insertion Reactions in Group XIV Anodes for Mg-Ion Batteries.
    Wang M; Yuwono JA; Vasudevan V; Birbilis N; Medhekar NV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):774-783. PubMed ID: 30525421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-lifetime aqueous Si-air batteries prepared by growing multi-dimensionally tunable ZIF-8 crystals on Si anodes.
    Zhang X; Deng F; Liu Z; Yu Y
    J Colloid Interface Sci; 2024 Nov; 674():722-734. PubMed ID: 38950471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The surface passivation of Ge(100) and Ge(111) anodes in Ge-air batteries with different doping types and concentrations.
    Yu Y; Chen D; Gao S; Huang J; Hu S; Yang H; Jin G
    RSC Adv; 2019 Dec; 9(68):39582-39588. PubMed ID: 35541391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidimensional Germanium-Based Materials as Anodes for Lithium-Ion Batteries.
    Qin J; Cao M
    Chem Asian J; 2016 Apr; 11(8):1169-81. PubMed ID: 26990878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries.
    Liu J; Song K; Zhu C; Chen CC; van Aken PA; Maier J; Yu Y
    ACS Nano; 2014 Jul; 8(7):7051-9. PubMed ID: 24940842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interconnected hollow carbon nanospheres for stable lithium metal anodes.
    Zheng G; Lee SW; Liang Z; Lee HW; Yan K; Yao H; Wang H; Li W; Chu S; Cui Y
    Nat Nanotechnol; 2014 Aug; 9(8):618-23. PubMed ID: 25064396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An etched nanoporous Ge anode in a novel metal-air energy conversion cell.
    Ocon JD; Kim JW; Uhm S; Mun BS; Lee J
    Phys Chem Chem Phys; 2013 May; 15(17):6333-8. PubMed ID: 23519102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.
    Yuan FW; Yang HJ; Tuan HY
    ACS Nano; 2012 Nov; 6(11):9932-42. PubMed ID: 23043347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insight into the discharge mechanism of silicon-air batteries using electrochemical impedance spectroscopy.
    Cohn G; Eichel RA; Ein-Eli Y
    Phys Chem Chem Phys; 2013 Mar; 15(9):3256-63. PubMed ID: 23348151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol as an electrolyte additive for alkaline zinc-air flow batteries.
    Hosseini S; Han SJ; Arponwichanop A; Yonezawa T; Kheawhom S
    Sci Rep; 2018 Jul; 8(1):11273. PubMed ID: 30050161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries.
    Li W; Yang Z; Cheng J; Zhong X; Gu L; Yu Y
    Nanoscale; 2014 May; 6(9):4532-7. PubMed ID: 24663690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
    Wang ZL; Xu D; Xu JJ; Zhang XB
    Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.