These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Proton-coupled O-O activation on a redox platform bearing a hydrogen-bonding scaffold. Chang CJ; Chng LL; Nocera DG J Am Chem Soc; 2003 Feb; 125(7):1866-76. PubMed ID: 12580614 [TBL] [Abstract][Full Text] [Related]
4. Porphyrin-LEGO®: synthesis of a hexafullereno-diporphyrin using porphyrins programmed for [4+2]-cycloaddition. Banala S; Huber RG; Müller T; Fechtel M; Liedl KR; Kräutler B Chem Commun (Camb); 2012 May; 48(36):4359-61. PubMed ID: 22447204 [TBL] [Abstract][Full Text] [Related]
5. Ligand-field dependence of the excited state dynamics of Hangman bisporphyrin dyad complexes. Hodgkiss JM; Krivokapić A; Nocera DG J Phys Chem B; 2007 Jul; 111(28):8258-68. PubMed ID: 17590036 [TBL] [Abstract][Full Text] [Related]
6. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins. Bediako DK; Solis BH; Dogutan DK; Roubelakis MM; Maher AG; Lee CH; Chambers MB; Hammes-Schiffer S; Nocera DG Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15001-6. PubMed ID: 25298534 [TBL] [Abstract][Full Text] [Related]
7. Double Hangman Iron Porphyrin and the Effect of Electrostatic Nonbonding Interactions on Carbon Dioxide Reduction. Margarit CG; Asimow NG; Gonzalez MI; Nocera DG J Phys Chem Lett; 2020 Mar; 11(5):1890-1895. PubMed ID: 32022566 [TBL] [Abstract][Full Text] [Related]
8. Acid-base-controlled stereoselective metalation of overhanging carboxylic acid porphyrins: consequences for the formation of heterobimetallic complexes. Le Gac S; Najjari B; Dorcet V; Roisnel T; Fusaro L; Luhmer M; Furet E; Halet JF; Boitrel B Chemistry; 2013 Aug; 19(33):11021-38. PubMed ID: 23813639 [TBL] [Abstract][Full Text] [Related]
9. Catalytic O[bond]O activation chemistry mediated by iron hangman porphyrins with a wide range of proton-donating abilities. Chng LL; Chang CJ; Nocera DG Org Lett; 2003 Jul; 5(14):2421-4. PubMed ID: 12841745 [TBL] [Abstract][Full Text] [Related]
15. Merging porphyrins with organometallics: synthesis and applications. Suijkerbuijk BM; Klein Gebbink RJ Angew Chem Int Ed Engl; 2008; 47(39):7396-421. PubMed ID: 18726980 [TBL] [Abstract][Full Text] [Related]
16. A new route to meso-formyl porphyrins. Balakumar A; Muthukumaran K; Lindsey JS J Org Chem; 2004 Jul; 69(15):5112-5. PubMed ID: 15255746 [TBL] [Abstract][Full Text] [Related]
17. Molecular electrocatalysis for oxygen reduction by cobalt porphyrins adsorbed at liquid/liquid interfaces. Su B; Hatay I; Trojánek A; Samec Z; Khoury T; Gros CP; Barbe JM; Daina A; Carrupt PA; Girault HH J Am Chem Soc; 2010 Mar; 132(8):2655-62. PubMed ID: 20131825 [TBL] [Abstract][Full Text] [Related]
18. Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis. Megiatto JD; Patterson D; Sherman BD; Moore TA; Gust D; Moore AL Chem Commun (Camb); 2012 May; 48(38):4558-60. PubMed ID: 22473504 [TBL] [Abstract][Full Text] [Related]
19. Aggregation of asphaltene model compounds using a porphyrin tethered to a carboxylic acid. Schulze M; Lechner MP; Stryker JM; Tykwinski RR Org Biomol Chem; 2015 Jul; 13(25):6984-91. PubMed ID: 26024486 [TBL] [Abstract][Full Text] [Related]
20. A bi-functional cobalt-porphyrinoid electrocatalyst: balance between overpotential and selectivity. Amanullah S; Dey A J Biol Inorg Chem; 2019 Jun; 24(4):437-442. PubMed ID: 31147783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]