These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 24975248)
1. Product ion distributions for the reactions of NO(+) with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer. Mochalski P; Unterkofler K; Španěl P; Smith D; Amann A Rapid Commun Mass Spectrom; 2014 Aug; 28(15):1683-90. PubMed ID: 24975248 [TBL] [Abstract][Full Text] [Related]
2. Product ion distributions for the reactions of NO Mochalski P; Unterkofler K; Španěl P; Smith D; Amann A Int J Mass Spectrom; 2014 Apr; 363():23-31. PubMed ID: 25844049 [TBL] [Abstract][Full Text] [Related]
3. Ternary association reactions of H Smith D; Španěl P Rapid Commun Mass Spectrom; 2022 Mar; 36(6):e9241. PubMed ID: 34904315 [TBL] [Abstract][Full Text] [Related]
4. Effect of Wine Matrix Composition on the Quantification of Volatile Sulfur Compounds by Headspace Solid-Phase Microextraction-Gas Chromatography-Pulsed Flame Photometric Detection. Davis PM; Qian MC Molecules; 2019 Sep; 24(18):. PubMed ID: 31547318 [TBL] [Abstract][Full Text] [Related]
5. Quantification of selected volatile organic compounds in human urine by gas chromatography selective reagent ionization time of flight mass spectrometry (GC-SRI-TOF-MS) coupled with head-space solid-phase microextraction (HS-SPME). Mochalski P; Unterkofler K Analyst; 2016 Aug; 141(15):4796-803. PubMed ID: 27241792 [TBL] [Abstract][Full Text] [Related]
6. Electrostatic Switching and Selection of H Španěl P; Spesyvyi A; Smith D Anal Chem; 2019 Apr; 91(8):5380-5388. PubMed ID: 30869870 [TBL] [Abstract][Full Text] [Related]
7. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O(+) and NO(+) with a series of volatile aldehydes of biogenic significance. Smith D; Chippendale TW; Španěl P Rapid Commun Mass Spectrom; 2014 Sep; 28(17):1917-28. PubMed ID: 25088135 [TBL] [Abstract][Full Text] [Related]
8. Photoionization-Generated Dibromomethane Cation Chemical Ionization Source for Time-of-Flight Mass Spectrometry and Its Application on Sensitive Detection of Volatile Sulfur Compounds. Jiang J; Wang Y; Hou K; Hua L; Chen P; Liu W; Xie Y; Li H Anal Chem; 2016 May; 88(10):5028-32. PubMed ID: 27109556 [TBL] [Abstract][Full Text] [Related]
9. Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies. Malásková M; Henderson B; Chellayah PD; Ruzsanyi V; Mochalski P; Cristescu SM; Mayhew CA J Breath Res; 2019 Jul; 13(4):046009. PubMed ID: 31163413 [TBL] [Abstract][Full Text] [Related]
10. Isolation and identification of putative precursors of the volatile sulfur compounds and their inhibition methods in heat-sterilized melon juices. Pan X; Zhang W; Lao F; Mi R; Liao X; Luo D; Wu J Food Chem; 2021 May; 343():128459. PubMed ID: 33158672 [TBL] [Abstract][Full Text] [Related]
12. Selected ion flow tube study of the reactions of H Španěl P; Žabka J; Zymak I; Smith D Rapid Commun Mass Spectrom; 2017 Mar; 31(5):437-446. PubMed ID: 27983765 [TBL] [Abstract][Full Text] [Related]
13. Gas chromatographic-ion trap mass spectrometric analysis of volatile organic compounds by ion-molecule reactions using the electron-deficient reagent ion CCl3(+). Wang CZ; Su Y; Wang HY; Guo YL J Am Soc Mass Spectrom; 2011 Oct; 22(10):1839-50. PubMed ID: 21952897 [TBL] [Abstract][Full Text] [Related]
14. Metal Ionization in Sub-atmospheric Pressure MALDI Interface: A New Tool for Mass Spectrometry of Volatile Organic Compounds. Bednařík A; Prysiazhnyi V; Preisler J Anal Chem; 2021 Jul; 93(27):9445-9453. PubMed ID: 34191481 [TBL] [Abstract][Full Text] [Related]
15. In vivo quantification of volatile organoselenium compounds released by bacteria exposed to selenium with HS-SPME-GC-MS. Effect of selenite and selenium nanoparticles. Moreno-Martin G; Sanz-Landaluze J; León-González ME; Madrid Y Talanta; 2021 Mar; 224():121907. PubMed ID: 33379111 [TBL] [Abstract][Full Text] [Related]
16. Effects of modular ion-funnel technology onto analysis of breath VOCs by means of real-time mass spectrometry. Pugliese G; Piel F; Trefz P; Sulzer P; Schubert JK; Miekisch W Anal Bioanal Chem; 2020 Oct; 412(26):7131-7140. PubMed ID: 32794005 [TBL] [Abstract][Full Text] [Related]
17. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine. Kwak J; Ohrnberger SA; Valencak TG Anal Bioanal Chem; 2016 Jul; 408(18):4927-34. PubMed ID: 27129975 [TBL] [Abstract][Full Text] [Related]
18. Novel approach for the determination of volatile compounds in processed onion by headspace gas chromatography-mass spectrometry (HS GC-MS). Colina-Coca C; González-Peña D; Vega E; de Ancos B; Sánchez-Moreno C Talanta; 2013 Jan; 103():137-44. PubMed ID: 23200369 [TBL] [Abstract][Full Text] [Related]
19. Detecting Hexafluoroisopropanol Using Soft Chemical Ionization Mass Spectrometry and Analytical Applications to Exhaled Breath. Weiss F; Chawaguta A; Tolpeit M; Volk V; Schiller A; Ruzsanyi V; Hillinger P; Lederer W; Märk TD; Mayhew CA J Am Soc Mass Spectrom; 2023 May; 34(5):958-968. PubMed ID: 36995741 [TBL] [Abstract][Full Text] [Related]