BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 24975555)

  • 1. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability.
    Tang FR; Loke WK
    Int J Radiat Biol; 2015 Jan; 91(1):13-27. PubMed ID: 24975555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-dose irradiation inhibits proliferation of the p53null type human prostate cancer cells through the ATM/p21 pathway.
    Li SJ; Liang XY; Li HJ; Yang GZ; Li W; Li Z; Zhou L; Wen X; Yu DH; Cui JW
    Int J Mol Med; 2018 Jan; 41(1):548-554. PubMed ID: 29115439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IR-inducible clusterin gene expression: a protein with potential roles in ionizing radiation-induced adaptive responses, genomic instability, and bystander effects.
    Klokov D; Criswell T; Leskov KS; Araki S; Mayo L; Boothman DA
    Mutat Res; 2004 Dec; 568(1):97-110. PubMed ID: 15530543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear factor-kappaB and manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated mouse skin epithelial cells.
    Fan M; Ahmed KM; Coleman MC; Spitz DR; Li JJ
    Cancer Res; 2007 Apr; 67(7):3220-8. PubMed ID: 17409430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent low dose irradiation enhances the effectiveness of radio- and chemo-therapy for human colorectal adenocarcinoma cell line HT-29.
    Wang Y; Li Y; Yang L; Yin D
    Oncol Rep; 2017 Jul; 38(1):591-597. PubMed ID: 28560404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted and nontargeted effects of low-dose ionizing radiation on delayed genomic instability in human cells.
    Huang L; Kim PM; Nickoloff JA; Morgan WF
    Cancer Res; 2007 Feb; 67(3):1099-104. PubMed ID: 17283143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation-induced bystander effects and adaptive responses--the Yin and Yang of low dose radiobiology?
    Mothersill C; Seymour C
    Mutat Res; 2004 Dec; 568(1):121-8. PubMed ID: 15530545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelationships amongst radiation-induced genomic instability, bystander effects, and the adaptive response.
    Kadhim MA; Moore SR; Goodwin EH
    Mutat Res; 2004 Dec; 568(1):21-32. PubMed ID: 15530536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-targeted effects as a paradigm breaking evidence.
    Averbeck D
    Mutat Res; 2010 May; 687(1-2):7-12. PubMed ID: 20080109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation-induced bystander effects: are they good, bad or both?
    Mothersill C; Seymour C
    Med Confl Surviv; 2005; 21(2):101-10. PubMed ID: 16050242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bystander effects, genomic instability, adaptive response, and cancer risk assessment for radiation and chemical exposures.
    Preston RJ
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):550-6. PubMed ID: 15979669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of MAPK signalling in radioadaptive response in BALB/c mice exposed to low dose ionizing radiation.
    Premkumar K; Shankar BS
    Int J Radiat Biol; 2016 May; 92(5):249-62. PubMed ID: 26926139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation.
    Rödel F; Frey B; Multhoff G; Gaipl U
    Cancer Lett; 2015 Jan; 356(1):105-13. PubMed ID: 24139966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biological-based model that links genomic instability, bystander effects, and adaptive response.
    Scott BR
    Mutat Res; 2004 Dec; 568(1):129-43. PubMed ID: 15530546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models.
    Tang FR; Loke WK; Khoo BC
    J Radiat Res; 2017 Mar; 58(2):165-182. PubMed ID: 28077626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects.
    Lyng FM; Maguire P; McClean B; Seymour C; Mothersill C
    Radiat Res; 2006 Apr; 165(4):400-9. PubMed ID: 16579652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability: the common factor linking low dose-induced genomic instability, adaptation and bystander effects.
    Schwartz JL
    Mutat Res; 2007 Mar; 616(1-2):196-200. PubMed ID: 17145066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects.
    Hamada N; Maeda M; Otsuka K; Tomita M
    Curr Mol Pharmacol; 2011 Jun; 4(2):79-95. PubMed ID: 21143186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New advances in radiation biology.
    Prise KM
    Occup Med (Lond); 2006 May; 56(3):156-61. PubMed ID: 16641500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquired tumor cell radiation resistance at the treatment site is mediated through radiation-orchestrated intercellular communication.
    Aravindan N; Aravindan S; Pandian V; Khan FH; Ramraj SK; Natt P; Natarajan M
    Int J Radiat Oncol Biol Phys; 2014 Mar; 88(3):677-85. PubMed ID: 24411622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.