These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24976134)

  • 21. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.
    Deng TH; Cloquet C; Tang YT; Sterckeman T; Echevarria G; Estrade N; Morel JL; Qiu RL
    Environ Sci Technol; 2014 Oct; 48(20):11926-33. PubMed ID: 25222693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zinc hyperaccumulation substitutes for defense failures beyond salicylate and jasmonate signaling pathways of Alternaria brassicicola attack in Noccaea caerulescens.
    Gallego B; Martos S; Cabot C; Barceló J; Poschenrieder C
    Physiol Plant; 2017 Apr; 159(4):401-415. PubMed ID: 27734509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens.
    Monsant AC; Tang C; Baker AJ
    Chemosphere; 2008 Oct; 73(5):635-42. PubMed ID: 18752830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variability of trace element distribution in Noccaea spp., Arabidopsis spp., and Thlaspi arvense leaves: the role of plant species and element accumulation ability.
    Galiová MV; Száková J; Prokeš L; Čadková Z; Coufalík P; Kanický V; Otruba V; Tlustoš P
    Environ Monit Assess; 2019 Feb; 191(3):181. PubMed ID: 30798372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens.
    Mari S; Gendre D; Pianelli K; Ouerdane L; Lobinski R; Briat JF; Lebrun M; Czernic P
    J Exp Bot; 2006; 57(15):4111-22. PubMed ID: 17079698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions.
    Tuomainen MH; Nunan N; Lehesranta SJ; Tervahauta AI; Hassinen VH; Schat H; Koistinen KM; Auriola S; McNicol J; Kärenlampi SO
    Proteomics; 2006 Jun; 6(12):3696-706. PubMed ID: 16691554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation.
    Catherine S; Christophe S; Louis MJ
    Int J Phytoremediation; 2006; 8(2):149-61. PubMed ID: 16924963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens.
    Tolrà RP; Poschenrieder C; Alonso R; Barceló D; Barceló J
    New Phytol; 2001 Sep; 151(3):621-626. PubMed ID: 33853264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time.
    Dessureault-Rompré J; Luster J; Schulin R; Tercier-Waeber ML; Nowack B
    Environ Pollut; 2010 May; 158(5):1955-62. PubMed ID: 19913965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Do metal-rich plants deter herbivores? A field test of the defence hypothesis.
    Noret N; Meerts P; Vanhaelen M; Dos Santos A; Escarré J
    Oecologia; 2007 May; 152(1):92-100. PubMed ID: 17216212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal hyperaccumulation armors plants against disease.
    Fones H; Davis CA; Rico A; Fang F; Smith JA; Preston GM
    PLoS Pathog; 2010 Sep; 6(9):e1001093. PubMed ID: 20838462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nicotianamine forms complexes with Zn(II) in vivo.
    Trampczynska A; Küpper H; Meyer-Klaucke W; Schmidt H; Clemens S
    Metallomics; 2010 Jan; 2(1):57-66. PubMed ID: 21072375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis).
    Jiang RF; Ma DY; Zhao FJ; McGrath SP
    New Phytol; 2005 Sep; 167(3):805-14. PubMed ID: 16101917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal heterogeneity of photosystem II function during acclimation to zinc exposure and mineral nutrition changes in the hyperaccumulator Noccaea caerulescens.
    Moustakas M; Bayçu G; Gevrek N; Moustaka J; Csatári I; Rognes SE
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6613-6624. PubMed ID: 30623337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy.
    Küpper H; Mijovilovich A; Meyer-Klaucke W; Kroneck PM
    Plant Physiol; 2004 Feb; 134(2):748-57. PubMed ID: 14966248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.
    van de Mortel JE; Schat H; Moerland PD; Ver Loren van Themaat E; van der Ent S; Blankestijn H; Ghandilyan A; Tsiatsiani S; Aarts MG
    Plant Cell Environ; 2008 Mar; 31(3):301-24. PubMed ID: 18088336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen.
    Pongrac P; Vogel-Mikus K; Kump P; Necemer M; Tolrà R; Poschenrieder C; Barceló J; Regvar M
    Chemosphere; 2007 Nov; 69(10):1602-9. PubMed ID: 17614121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging Zn and Ni distributions in leaves of different ages of the hyperaccumulator Noccaea caerulescens by synchrotron-based X-ray fluorescence.
    do Nascimento CWA; Hesterberg D; Tappero R
    J Hazard Mater; 2021 Apr; 408():124813. PubMed ID: 33385722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution of cadmium in leaves of Thlaspi caerulescens.
    Cosio C; DeSantis L; Frey B; Diallo S; Keller C
    J Exp Bot; 2005 Feb; 56(412):765-75. PubMed ID: 15642714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zinc stress affects ionome and metabolome in tea plants.
    Zhang Y; Wang Y; Ding Z; Wang H; Song L; Jia S; Ma D
    Plant Physiol Biochem; 2017 Feb; 111():318-328. PubMed ID: 27992770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.