These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 24976174)

  • 1. Cellular behavior as a dynamic field for exploring bone bioengineering: a closer look at cell-biomaterial interface.
    Gemini-Piperni S; Takamori ER; Sartoretto SC; Paiva KB; Granjeiro JM; de Oliveira RC; Zambuzzi WF
    Arch Biochem Biophys; 2014 Nov; 561():88-98. PubMed ID: 24976174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel collagen scaffold supports human osteogenesis--applications for bone tissue engineering.
    Keogh MB; O' Brien FJ; Daly JS
    Cell Tissue Res; 2010 Apr; 340(1):169-77. PubMed ID: 20198386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW
    Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Advance in research of osteoblast adhesion to bioactive materials].
    Niu X; Luo Y; Pan J; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):848-52. PubMed ID: 16156288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts.
    Nan K; Sun S; Li Y; Chen H; Wu T; Lu F
    J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone regeneration on computer-designed nano-fibrous scaffolds.
    Chen VJ; Smith LA; Ma PX
    Biomaterials; 2006 Jul; 27(21):3973-9. PubMed ID: 16564086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V; Kaplan D
    Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoblasts in bone tissue engineering.
    Jayakumar P; Di Silvio L
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1415-40. PubMed ID: 21287829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene based scaffolds on bone tissue engineering.
    Shadjou N; Hasanzadeh M; Khalilzadeh B
    Bioengineered; 2018 Jan; 9(1):38-47. PubMed ID: 29095664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotubes: directions and perspectives in oral regenerative medicine.
    Martins-Júnior PA; Alcântara CE; Resende RR; Ferreira AJ
    J Dent Res; 2013 Jul; 92(7):575-83. PubMed ID: 23677650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone tissue engineering: state of the art and future trends.
    Salgado AJ; Coutinho OP; Reis RL
    Macromol Biosci; 2004 Aug; 4(8):743-65. PubMed ID: 15468269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress of Regenerative Therapy in Orthopedics.
    Pearlin ; Nayak S; Manivasagam G; Sen D
    Curr Osteoporos Rep; 2018 Apr; 16(2):169-181. PubMed ID: 29488062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials.
    Unger RE; Sartoris A; Peters K; Motta A; Migliaresi C; Kunkel M; Bulnheim U; Rychly J; Kirkpatrick CJ
    Biomaterials; 2007 Sep; 28(27):3965-76. PubMed ID: 17582491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization.
    Woo KM; Jun JH; Chen VJ; Seo J; Baek JH; Ryoo HM; Kim GS; Somerman MJ; Ma PX
    Biomaterials; 2007 Jan; 28(2):335-43. PubMed ID: 16854461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the regenerative microenvironment with biomaterials.
    Rice JJ; Martino MM; De Laporte L; Tortelli F; Briquez PS; Hubbell JA
    Adv Healthc Mater; 2013 Jan; 2(1):57-71. PubMed ID: 23184739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-scaffold interactions in the bone tissue engineering triad.
    Murphy CM; O'Brien FJ; Little DG; Schindeler A
    Eur Cell Mater; 2013 Sep; 26():120-32. PubMed ID: 24052425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications.
    Abou Neel EA; Chrzanowski W; Knowles JC
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():307-13. PubMed ID: 24411382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.