These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 24976244)
1. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. van Lith R; Gregory EK; Yang J; Kibbe MR; Ameer GA Biomaterials; 2014 Sep; 35(28):8113-22. PubMed ID: 24976244 [TBL] [Abstract][Full Text] [Related]
2. Development of Poly(1,8-octanediol- Yu L; He W; Peters EB; Ledford BT; Tsihlis ND; Kibbe MR ACS Appl Bio Mater; 2020 Apr; 3(4):2150-2159. PubMed ID: 35025266 [TBL] [Abstract][Full Text] [Related]
3. Coating small-diameter ePTFE vascular grafts with tunable poly(diol-co-citrate-co-ascorbate) elastomers to reduce neointimal hyperplasia. Yu L; Newton ER; Gillis DC; Sun K; Cooley BC; Keith AN; Sheiko SS; Tsihlis ND; Kibbe MR Biomater Sci; 2021 Aug; 9(15):5160-5174. PubMed ID: 34312627 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of poly(1,2-propanediol-co-1,8-octanediol-co-citrate) biodegradable elastomers for tissue engineering. Li J; Zheng W; Pan P; Sun X; Zhang Y Biomed Mater Eng; 2014; 24(1):619-24. PubMed ID: 24211946 [TBL] [Abstract][Full Text] [Related]
5. (Citric acid-co-polycaprolactone triol) polyester: a biodegradable elastomer for soft tissue engineering. Thomas LV; Nair PD Biomatter; 2011; 1(1):81-90. PubMed ID: 23507730 [TBL] [Abstract][Full Text] [Related]
6. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold. Zhu L; Zhang Y; Ji Y J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114 [TBL] [Abstract][Full Text] [Related]
7. Preparation and properties of a novel biodegradable polyester elastomer with functional groups. Liu QY; Wu SZ; Tan TW; Weng JY; Zhang LQ; Liu L; Tian W; Chen DF J Biomater Sci Polym Ed; 2009; 20(11):1567-78. PubMed ID: 19619397 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable nitric oxide-releasing poly(diol citrate) elastomers. Zhao H; Serrano MC; Popowich DA; Kibbe MR; Ameer GA J Biomed Mater Res A; 2010 Apr; 93(1):356-63. PubMed ID: 19569216 [TBL] [Abstract][Full Text] [Related]
9. A thermoresponsive biodegradable polymer with intrinsic antioxidant properties. Yang J; van Lith R; Baler K; Hoshi RA; Ameer GA Biomacromolecules; 2014 Nov; 15(11):3942-52. PubMed ID: 25295411 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of poly(antioxidant β-amino esters) for controlled release of polyphenolic antioxidants. Wattamwar PP; Biswal D; Cochran DB; Lyvers AC; Eitel RE; Anderson KW; Hilt JZ; Dziubla TD Acta Biomater; 2012 Jul; 8(7):2529-37. PubMed ID: 22426289 [TBL] [Abstract][Full Text] [Related]
11. Study on the control of the compositions and properties of a biodegradable polyester elastomer. Liu Q; Tan T; Weng J; Zhang L Biomed Mater; 2009 Apr; 4(2):025015. PubMed ID: 19349654 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable Elastomers with Antioxidant and Retinoid-like Properties. van Lith R; Wang X; Ameer G ACS Biomater Sci Eng; 2016 Feb; 2(2):268-277. PubMed ID: 27347559 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine. Fang J; Ye SH; Shankarraman V; Huang Y; Mo X; Wagner WR Acta Biomater; 2014 Nov; 10(11):4639-4649. PubMed ID: 25132273 [TBL] [Abstract][Full Text] [Related]
14. Biological Activity of Poly(1,3-propanediol citrate) Films and Nonwovens: Mechanical, Thermal, Antimicrobial, and Cytotoxicity Studies. Bandzerewicz A; Wierzchowski K; Mierzejewska J; Denis P; Gołofit T; Szymczyk-Ziółkowska P; Pilarek M; Gadomska-Gajadhur A Macromol Rapid Commun; 2024 Jan; 45(2):e2300452. PubMed ID: 37838916 [TBL] [Abstract][Full Text] [Related]
15. Enabling non-invasive assessment of an engineered endothelium on ePTFE vascular grafts without increasing oxidative stress. Jiang B; Perrin L; Kats D; Meade T; Ameer G Biomaterials; 2015 Nov; 69():110-20. PubMed ID: 26283158 [TBL] [Abstract][Full Text] [Related]
16. A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering. Thomas LV; Arun U; Remya S; Nair PD J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S259-69. PubMed ID: 18925362 [TBL] [Abstract][Full Text] [Related]
17. Polyurethane End-Capped by Tetramethylpyrazine-Nitrone for Promoting Endothelialization Under Oxidative Stress. Qu B; Yuan L; Yang L; Li J; Lv H; Yang X Adv Healthc Mater; 2019 Oct; 8(20):e1900582. PubMed ID: 31529779 [TBL] [Abstract][Full Text] [Related]
18. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411 [TBL] [Abstract][Full Text] [Related]
19. Citrate-Based Polyester Elastomer with Artificially Regulatable Degradation Rate on Demand. Wan L; Lu L; Liang X; Liu Z; Huang X; Du R; Luo Q; Xu Q; Zhang Q; Jia X Biomacromolecules; 2023 Sep; 24(9):4123-4137. PubMed ID: 37584644 [TBL] [Abstract][Full Text] [Related]
20. Bioinspired Polydopamine-Coated Hemoglobin as Potential Oxygen Carrier with Antioxidant Properties. Wang Q; Zhang R; Lu M; You G; Wang Y; Chen G; Zhao C; Wang Z; Song X; Wu Y; Zhao L; Zhou H Biomacromolecules; 2017 Apr; 18(4):1333-1341. PubMed ID: 28323418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]