These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24976493)

  • 21. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.
    Duan B; Liu F; Zhang W; Zheng H; Zhang Q; Li X; Bu Y
    Int J Environ Res Public Health; 2015 Dec; 12(12):15807-18. PubMed ID: 26690464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics.
    Zhao B; Xu X; Zeng F; Li H; Chen X
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19423-19435. PubMed ID: 29728972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.
    Huang HJ; Yuan XZ
    Bioresour Technol; 2016 Jan; 200():991-8. PubMed ID: 26577578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative study on the mobility and speciation of heavy metals in ashes from co-combustion of sewage sludge/dredged sludge and rice husk.
    Wang T; Xue Y; Zhou M; Yuan Y; Zhao S; Tan G; Zhou X; Geng J; Wu S; Hou H
    Chemosphere; 2017 Feb; 169():162-170. PubMed ID: 27875717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental study of the bio-oil production from sewage sludge by supercritical conversion process.
    Wang Y; Chen G; Li Y; Yan B; Pan D
    Waste Manag; 2013 Nov; 33(11):2408-15. PubMed ID: 23816312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water.
    Xu C; Lancaster J
    Water Res; 2008 Mar; 42(6-7):1571-82. PubMed ID: 18048075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge.
    Li L; Xu ZR; Zhang C; Bao J; Dai X
    Bioresour Technol; 2012 Oct; 121():169-75. PubMed ID: 22858482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Migration and Transformation of Heavy Metals in Sewage Sludge during Hydrothermal Carbonization Combined with Combustion.
    Liu M; Duan Y; Bikane K; Zhao L
    Biomed Res Int; 2018; 2018():1913848. PubMed ID: 30050921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge.
    Wang X; Chi Q; Liu X; Wang Y
    Chemosphere; 2019 Feb; 216():698-706. PubMed ID: 30391891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals.
    Devi P; Saroha AK
    Bioresour Technol; 2014 Jun; 162():308-15. PubMed ID: 24762760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants.
    García-Delgado M; Rodríguez-Cruz MS; Lorenzo LF; Arienzo M; Sánchez-Martín MJ
    Sci Total Environ; 2007 Aug; 382(1):82-92. PubMed ID: 17532025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecological risk assessment of sewage sludge from municipal wastewater treatment plants: a case study.
    Gusiatin ZM; Kulikowska D; Klik BK; Hajdukiewicz K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(13):1167-1176. PubMed ID: 30596324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy metal mobility in runoff water and absorption by eggplant fruits from sludge treated soil.
    Antonious GF; Turley ET; Sikora F; Snyder JC
    J Environ Sci Health B; 2008 Aug; 43(6):526-32. PubMed ID: 18665990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-oil from thermo-chemical hydro-liquefaction of wet sewage sludge.
    Malins K; Kampars V; Brinks J; Neibolte I; Murnieks R; Kampare R
    Bioresour Technol; 2015; 187():23-29. PubMed ID: 25827249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive utilization of the pyrolysis products from sewage sludge.
    Xu WY; Wu D
    Environ Technol; 2015; 36(13-16):1731-44. PubMed ID: 25609547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of ultrasound pretreatment of municipal sewage sludge on characteristics of bio-oil from hydrothermal liquefaction process.
    Kapusta K
    Waste Manag; 2018 Aug; 78():183-190. PubMed ID: 32559903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic.
    Hanay O; Hasar H; Kocer NN
    J Hazard Mater; 2009 Sep; 169(1-3):703-10. PubMed ID: 19423219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.
    Liu T; Liu Z; Zheng Q; Lang Q; Xia Y; Peng N; Gai C
    Bioresour Technol; 2018 Jan; 247():282-290. PubMed ID: 28950137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge.
    Li Z; Deng H; Yang L; Zhang G; Li Y; Ren Y
    Bioresour Technol; 2018 May; 256():216-223. PubMed ID: 29453047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heavy metal distribution and speciation during sludge reduction using aquatic worms.
    Zhang X; Tian Y; Wang Q; Chen L; Wang X
    Bioresour Technol; 2012 Dec; 126():41-7. PubMed ID: 23073088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.