BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24976583)

  • 41. NMDA receptors and the ontogeny of post-shock and retention freezing during contextual fear conditioning.
    Miller LA; Heroux NA; Stanton ME
    Dev Psychobiol; 2020 Apr; 62(3):380-385. PubMed ID: 31621064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extinction, applied after retrieval of auditory fear memory, selectively increases zinc-finger protein 268 and phosphorylated ribosomal protein S6 expression in prefrontal cortex and lateral amygdala.
    Tedesco V; Roquet RF; DeMis J; Chiamulera C; Monfils MH
    Neurobiol Learn Mem; 2014 Nov; 115():78-85. PubMed ID: 25196703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A behavioral analysis of the impact of voluntary physical activity on hippocampus-dependent contextual conditioning.
    Greenwood BN; Strong PV; Foley TE; Fleshner M
    Hippocampus; 2009 Oct; 19(10):988-1001. PubMed ID: 19115374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NMDA receptor antagonism disrupts acquisition and retention of the context preexposure facilitation effect in adolescent rats.
    Heroux NA; Robinson-Drummer PA; Rosen JB; Stanton ME
    Behav Brain Res; 2016 Mar; 301():168-77. PubMed ID: 26711910
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sleep deprivation impairs contextual fear conditioning and attenuates subsequent behavioural, endocrine and neuronal responses.
    Hagewoud R; Bultsma LJ; Barf RP; Koolhaas JM; Meerlo P
    J Sleep Res; 2011 Jun; 20(2):259-66. PubMed ID: 20946438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning.
    Phillips RG; LeDoux JE
    Behav Neurosci; 1992 Apr; 106(2):274-85. PubMed ID: 1590953
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of age, post-training consolidation, and conjunctive associations in the ontogeny of the context preexposure facilitation effect.
    Jablonski SA; Schiffino FL; Stanton ME
    Dev Psychobiol; 2012 Nov; 54(7):714-22. PubMed ID: 22127879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immediate shock deficit in fear conditioning: effects of shock manipulations.
    Landeira-Fernandez J; DeCola JP; Kim JJ; Fanselow MS
    Behav Neurosci; 2006 Aug; 120(4):873-9. PubMed ID: 16893293
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unconditioned freezing is enhanced in an appetitive context: implications for the contextual dependency of unconditioned fear.
    Knox D; Fitzpatrick CJ; George SA; Abelson JL; Liberzon I
    Neurobiol Learn Mem; 2012 May; 97(4):386-92. PubMed ID: 22446013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Serotonergic mechanisms of the median raphe nucleus-dorsal hippocampus in conditioned fear: Output circuit involves the prefrontal cortex and amygdala.
    Almada RC; Borelli KG; Albrechet-Souza L; Brandão ML
    Behav Brain Res; 2009 Nov; 203(2):279-87. PubMed ID: 19464321
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gene expression analysis of Arc mRNA as a neuronal cell activity marker in the hippocampus and amygdala in two-way active avoidance test in rats.
    Yasuno K; Takahashi E; Igarashi I; Iguchi T; Tsuchiya Y; Kai K; Mori K
    J Pharmacol Toxicol Methods; 2017; 88(Pt 2):140-146. PubMed ID: 28962918
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation.
    von Hertzen LS; Giese KP
    J Neurosci; 2005 Feb; 25(8):1935-42. PubMed ID: 15728833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms of context conditioning in the developing rat.
    Stanton ME; Murawski NJ; Jablonski SA; Robinson-Drummer PA; Heroux NA
    Neurobiol Learn Mem; 2021 Mar; 179():107388. PubMed ID: 33482320
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment.
    Banerjee A; Luong JA; Ho A; Saib AO; Ploski JE
    Mol Autism; 2016; 7():16. PubMed ID: 26929812
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contextual and auditory fear conditioning continue to emerge during the periweaning period in rats.
    Burman MA; Erickson KJ; Deal AL; Jacobson RE
    PLoS One; 2014; 9(6):e100807. PubMed ID: 24977415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of egr-1 (zif268) mRNA in select fear-related brain regions following exposure to a predator.
    Rosen JB; Adamec RE; Thompson BL
    Behav Brain Res; 2005 Jul; 162(2):279-88. PubMed ID: 15970222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single session contextual fear conditioning remains dependent on the hippocampus despite an increase in the number of context-shock pairings during learning.
    Lehmann H; Rourke BK; Booker A; Glenn MJ
    Neurobiol Learn Mem; 2013 Nov; 106():294-9. PubMed ID: 23142771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of nicotinic acetylcholine receptors in the medial prefrontal cortex and hippocampus in trace fear conditioning.
    Raybuck JD; Gould TJ
    Neurobiol Learn Mem; 2010 Oct; 94(3):353-63. PubMed ID: 20727979
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence of contextual fear after lesions of the hippocampus: a disruption of freezing but not fear-potentiated startle.
    McNish KA; Gewirtz JC; Davis M
    J Neurosci; 1997 Dec; 17(23):9353-60. PubMed ID: 9364080
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contextual fear conditioning with a time interval induces CREB phosphorylation in the dorsal hippocampus and amygdala nuclei that depend on prelimbic cortex activity.
    Santos TB; Kramer-Soares JC; Oliveira MGM
    Hippocampus; 2023 Jul; 33(7):872-879. PubMed ID: 36847108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.