These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24976644)

  • 1. Efficient simulation of cardiac electrical propagation using high order finite elements.
    Arthurs CJ; Bishop MJ; Kay D
    J Comput Phys; 2012 May; 231(10):3946-3962. PubMed ID: 24976644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study of POD-Galerkin-DEIM reduced order modeling of cardiac monodomain formulation.
    Khan R; Ng KT
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34808611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model.
    Liu H; Sun W
    Comput Methods Biomech Biomed Engin; 2016; 19(11):1171-80. PubMed ID: 26692168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-order finite element methods for cardiac monodomain simulations.
    Vincent KP; Gonzales MJ; Gillette AK; Villongco CT; Pezzuto S; Omens JH; Holst MJ; McCulloch AD
    Front Physiol; 2015; 6():217. PubMed ID: 26300783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements.
    Cuccuru G; Fotia G; Maggio F; Southern J
    Biomed Res Int; 2015; 2015():473279. PubMed ID: 26583112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning.
    Pagani S; Manzoni A
    Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3450. PubMed ID: 33599106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology.
    Krishnamoorthi S; Sarkar M; Klug WS
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1243-66. PubMed ID: 23873868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison between the hp-version of Finite Element Method with EIDORS for Electrical Impedance Tomography.
    Saeedizadeh N; Kermani S; Rabbani H
    J Med Signals Sens; 2011 Jul; 1(3):200-5. PubMed ID: 22606676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A macro finite-element formulation for cardiac electrophysiology simulations using hybrid unstructured grids.
    Rocha BM; Kickinger F; Prassl AJ; Haase G; Vigmond EJ; dos Santos RW; Zaglmayr S; Plank G
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1055-65. PubMed ID: 20699206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An active strain electromechanical model for cardiac tissue.
    Nobile F; Quarteroni A; Ruiz-Baier R
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.
    Heidenreich EA; Ferrero JM; Doblaré M; Rodríguez JF
    Ann Biomed Eng; 2010 Jul; 38(7):2331-45. PubMed ID: 20238165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilized hybrid discontinuous Galerkin finite element method for the cardiac monodomain equation.
    Rocha BM; Dos Santos RW; Igreja I; Loula AFD
    Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3341. PubMed ID: 32293783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-order spectral/
    Cantwell CD; Yakovlev S; Kirby RM; Peters NS; Sherwin SJ
    J Comput Phys; 2014 Jan; 257(PA):813-829. PubMed ID: 24748685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space-time adaptive numerical methods for geophysical applications.
    Castro CE; Käser M; Toro EF
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4613-31. PubMed ID: 19840984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A second-order finite element algorithm for solving the three-dimensional EEG forward problem.
    Zhang YC; Zhu SA; He B
    Phys Med Biol; 2004 Jul; 49(13):2975-87. PubMed ID: 15285259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-implicit Non-conforming Finite-Element Schemes for Cardiac Electrophysiology: A Framework for Mesh-Coarsening Heart Simulations.
    Jilberto J; Hurtado DE
    Front Physiol; 2018; 9():1513. PubMed ID: 30425648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Method of Characteristics for One-Dimensional Blood Flow.
    Acosta S; Puelz C; Riviére B; Penny DJ; Rusin CG
    J Comput Phys; 2015 Aug; 294():96-109. PubMed ID: 25931614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smoothed finite element methods in simulation of active contraction of myocardial tissue samples.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2023 Aug; 157():111691. PubMed ID: 37441914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional pseudospectral modelling of cardiac propagation in an inhomogeneous anisotropic tissue.
    Ng KT; Yan R
    Med Biol Eng Comput; 2003 Nov; 41(6):618-24. PubMed ID: 14686586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.