These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24976863)

  • 1. The enzymatic hydrolysis of pretreated pulp fibers predominantly involves "peeling/erosion" modes of action.
    Arantes V; Gourlay K; Saddler JN
    Biotechnol Biofuels; 2014; 7():87. PubMed ID: 24976863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pattern of cell wall deterioration in lignocellulose fibers throughout enzymatic cellulose hydrolysis.
    Li X; Clarke K; Li K; Chen A
    Biotechnol Prog; 2012; 28(6):1389-99. PubMed ID: 22887935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time single molecular study of a pretreated cellulose hydrolysis mode and individual enzyme movement.
    Zhang Y; Zhang M; Alexander Reese R; Zhang H; Xu B
    Biotechnol Biofuels; 2016; 9():85. PubMed ID: 27073415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.
    Arantes V; Saddler JN
    Biotechnol Biofuels; 2011 Feb; 4():3. PubMed ID: 21310050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?
    Hu J; Arantes V; Saddler JN
    Biotechnol Biofuels; 2011 Oct; 4():36. PubMed ID: 21974832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber fractionation to understand the effect of mechanical refining on fiber structure and resulting enzymatic digestibility of biomass.
    Corbett DB; Knoll C; Venditti R; Jameel H; Park S
    Biotechnol Bioeng; 2020 Apr; 117(4):924-932. PubMed ID: 31885079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of carbohydrate binding modules (CBMs) to monitor changes in fragmentation and cellulose fiber surface morphology during cellulase- and Swollenin-induced deconstruction of lignocellulosic substrates.
    Gourlay K; Hu J; Arantes V; Penttilä M; Saddler JN
    J Biol Chem; 2015 Jan; 290(5):2938-45. PubMed ID: 25527502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fibrillation on the wood fibers' enzymatic hydrolysis enhanced by mechanical refining.
    Liu W; Wang B; Hou Q; Chen W; Wu M
    Bioresour Technol; 2016 Apr; 206():99-103. PubMed ID: 26851576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deconstruction of cellulosic fibers to fibrils based on enzymatic pretreatment.
    Wang S; Gao W; Chen K; Xiang Z; Zeng J; Wang B; Xu J
    Bioresour Technol; 2018 Nov; 267():426-430. PubMed ID: 30032056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Cellulase-Treated Fibers and Resulting Cellulose Nanocrystals Generated through Acid Hydrolysis.
    Beyene D; Chae M; Dai J; Danumah C; Tosto F; Demesa AG; Bressler DC
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30042345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum.
    Lynd LR; Grethlein HE
    Biotechnol Bioeng; 1987 Jan; 29(1):92-100. PubMed ID: 18561134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers.
    Chen XQ; Deng XY; Shen WH; Jia MY
    Carbohydr Polym; 2018 Feb; 181():879-884. PubMed ID: 29254049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The synergistic action of accessory enzymes enhances the hydrolytic potential of a "cellulase mixture" but is highly substrate specific.
    Hu J; Arantes V; Pribowo A; Saddler JN
    Biotechnol Biofuels; 2013 Aug; 6(1):112. PubMed ID: 23915398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulase pretreatment for enhancing cold caustic extraction-based separation of hemicelluloses and cellulose from cellulosic fibers.
    Li J; Zhang S; Li H; Ouyang X; Huang L; Ni Y; Chen L
    Bioresour Technol; 2018 Mar; 251():1-6. PubMed ID: 29253781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced cellulase hydrolysis of eucalyptus waste fibers from pulp mill by Tween80-assisted ferric chloride pretreatment.
    Chen L; Fu S
    J Agric Food Chem; 2013 Apr; 61(13):3293-300. PubMed ID: 23480567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility.
    Kumar L; Arantes V; Chandra R; Saddler J
    Bioresour Technol; 2012 Jan; 103(1):201-8. PubMed ID: 22047660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The promotional effect of water-soluble extractives on the enzymatic cellulose hydrolysis of pretreated wheat straw.
    Smit AT; Huijgen WJJ
    Bioresour Technol; 2017 Nov; 243():994-999. PubMed ID: 28753744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of enzyme loading on enzymatic hydrolysis of cardboard waste and size distribution of the resulting fiber residue.
    Kinnarinen T; Häkkinen A
    Bioresour Technol; 2014 May; 159():136-42. PubMed ID: 24650527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying cellulose accessibility during enzyme-mediated deconstruction using 2 fluorescence-tagged carbohydrate-binding modules.
    Novy V; Aïssa K; Nielsen F; Straus SK; Ciesielski P; Hunt CG; Saddler J
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22545-22551. PubMed ID: 31636211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.