These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24976868)

  • 1. In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion.
    Liu X; Xu Y; Li S; Wang Y; Peng J; Luo C; Luo X; Zheng M; Chen K; Jiang H
    J Cheminform; 2014; 6():33. PubMed ID: 24976868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in In Silico Target Fishing.
    Galati S; Di Stefano M; Martinelli E; Poli G; Tuccinardi T
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring polypharmacology using a ROCS-based target fishing approach.
    AbdulHameed MD; Chaudhury S; Singh N; Sun H; Wallqvist A; Tawa GJ
    J Chem Inf Model; 2012 Feb; 52(2):492-505. PubMed ID: 22196353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new ChEMBL dataset for the similarity-based target fishing engine FastTargetPred: Annotation of an exhaustive list of linear tetrapeptides.
    Tanwar S; Auberger P; Gillet G; DiPaola M; Tsaioun K; Villoutreix BO
    Data Brief; 2022 Jun; 42():108159. PubMed ID: 35496477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tools for in silico target fishing.
    Cereto-Massagué A; Ojeda MJ; Valls C; Mulero M; Pujadas G; Garcia-Vallve S
    Methods; 2015 Jan; 71():98-103. PubMed ID: 25277948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server.
    Lee K; Lee M; Kim D
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):567. PubMed ID: 29297315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GES polypharmacology fingerprints: a novel approach for drug repositioning.
    Pérez-Nueno VI; Karaboga AS; Souchet M; Ritchie DW
    J Chem Inf Model; 2014 Mar; 54(3):720-34. PubMed ID: 24494653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting targeted polypharmacology for drug repositioning and multi- target drug discovery.
    Liu X; Zhu F; Ma XH; Shi Z; Yang SY; Wei YQ; Chen YZ
    Curr Med Chem; 2013; 20(13):1646-61. PubMed ID: 23410165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLATO: A Predictive Drug Discovery Web Platform for Efficient Target Fishing and Bioactivity Profiling of Small Molecules.
    Ciriaco F; Gambacorta N; Trisciuzzi D; Nicolotti O
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment.
    Salentin S; Haupt VJ; Daminelli S; Schroeder M
    Prog Biophys Mol Biol; 2014; 116(2-3):174-86. PubMed ID: 24923864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive assessment of nine target prediction web services: which should we choose for target fishing?
    Ji KY; Liu C; Liu ZQ; Deng YF; Hou TJ; Cao DS
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36681902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Polypharmacology Profiling Based on a Multifingerprint Similarity Predictive Approach.
    Ciriaco F; Gambacorta N; Alberga D; Nicolotti O
    J Chem Inf Model; 2021 Oct; 61(10):4868-4876. PubMed ID: 34570498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ultra-fast 2D and 3D ligand and target descriptors for side effect prediction and network analysis in polypharmacology.
    Cortés-Cabrera A; Morris GM; Finn PW; Morreale A; Gago F
    Br J Pharmacol; 2013 Oct; 170(3):557-67. PubMed ID: 23826885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Reliable Are Ligand-Centric Methods for Target Fishing?
    Peón A; Dang CC; Ballester PJ
    Front Chem; 2016; 4():15. PubMed ID: 27148522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ontology for pharmaceutical ligands and its application for in silico screening and library design.
    Schuffenhauer A; Zimmermann J; Stoop R; van der Vyver JJ; Lecchini S; Jacoby E
    J Chem Inf Comput Sci; 2002; 42(4):947-55. PubMed ID: 12132896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOST: most-similar ligand based approach to target prediction.
    Huang T; Mi H; Lin CY; Zhao L; Zhong LL; Liu FB; Zhang G; Lu AP; Bian ZX;
    BMC Bioinformatics; 2017 Mar; 18(1):165. PubMed ID: 28284192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDTD: a web-accessible protein database for drug target identification.
    Gao Z; Li H; Zhang H; Liu X; Kang L; Luo X; Zhu W; Chen K; Wang X; Jiang H
    BMC Bioinformatics; 2008 Feb; 9():104. PubMed ID: 18282303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarity metrics for ligands reflecting the similarity of the target proteins.
    Schuffenhauer A; Floersheim P; Acklin P; Jacoby E
    J Chem Inf Comput Sci; 2003; 43(2):391-405. PubMed ID: 12653501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-label approach to target prediction taking ligand promiscuity into account.
    Afzal AM; Mussa HY; Turner RE; Bender A; Glen RC
    J Cheminform; 2015; 7():24. PubMed ID: 26064191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual drug screen schema based on multiview similarity integration and ranking aggregation.
    Kang H; Sheng Z; Zhu R; Huang Q; Liu Q; Cao Z
    J Chem Inf Model; 2012 Mar; 52(3):834-43. PubMed ID: 22332590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.