These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24976950)

  • 1. Simple Multi-level Microchannel Fabrication by Pseudo-Grayscale Backside Diffused Light Lithography.
    Lai D; Labuz JM; Kim J; Luker GD; Shikanov A; Takayama S
    RSC Adv; 2013 Nov; 3(42):19467-19473. PubMed ID: 24976950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography.
    Kasi DG; de Graaf MNS; Motreuil-Ragot PA; Frimat JMS; Ferrari MD; Sarro PM; Mastrangeli M; van den Maagdenberg AMJM; Mummery CL; Orlova VV
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Long-Term Gradient Generator with Axon Separation Prototyped by 185 nm Diffused Light Photolithography of SU-8 Photoresist.
    Futai N; Tamura M; Ogawa T; Tanaka M
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30586941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rounded multi-level microchannels with orifices made in one exposure enable aqueous two-phase system droplet microfluidics.
    Lai D; Frampton JP; Sriram H; Takayama S
    Lab Chip; 2011 Oct; 11(20):3551-4. PubMed ID: 21892481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple microfluidic gradient generator with a soft-lithographically prototyped, high-aspect-ratio, ~2 µm wide microchannel.
    Ogawa T; Matsunaga N; Inomata S; Tanaka M; Futai N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5521-4. PubMed ID: 24110987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Prototyping of Soft Lithography Masters for Microfluidic Devices Using Dry Film Photoresist in a Non-Cleanroom Setting.
    Mukherjee P; Nebuloni F; Gao H; Zhou J; Papautsky I
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30875965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo and Soft Lithography for Organ-on-Chip Applications.
    Ferrari E; Nebuloni F; Rasponi M; Occhetta P
    Methods Mol Biol; 2022; 2373():1-19. PubMed ID: 34520003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of a Single Emulsion Mask for Three-Dimensional (3D) Microstructure Fabrication of Micromixers Using the Grayscale Photolithography Technique.
    Abdul Hamid ISL; Khi Khim B; Sal Hamid S; Abd Rahman MF; Abd Manaf A
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32485795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication.
    Song SH; Kim K; Choi SE; Han S; Lee HS; Kwon S; Park W
    Opt Lett; 2014 Sep; 39(17):5162-5. PubMed ID: 25166099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilevel microfluidics via single-exposure photolithography.
    Toepke MW; Kenis PJ
    J Am Chem Soc; 2005 Jun; 127(21):7674-5. PubMed ID: 15913346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Rapid Prototyping Technique for Microfluidics with High Robustness and Flexibility.
    Liu Z; Xu W; Hou Z; Wu Z
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction.
    Deng T; Wu H; Brittain ST; Whitesides GM
    Anal Chem; 2000 Jul; 72(14):3176-80. PubMed ID: 10939384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cofabrication: a strategy for building multicomponent microsystems.
    Siegel AC; Tang SK; Nijhuis CA; Hashimoto M; Phillips ST; Dickey MD; Whitesides GM
    Acc Chem Res; 2010 Apr; 43(4):518-28. PubMed ID: 20088528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of three-dimensional micro- and nanoscale features with single-exposure photolithography.
    Kovarik ML; Jacobson SC
    Anal Chem; 2006 Jul; 78(14):5214-7. PubMed ID: 16841951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gray-scale photolithography using microfluidic photomasks.
    Chen C; Hirdes D; Folch A
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1499-504. PubMed ID: 12574512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable integration of nano-, and microfluidics with hybrid two-photon lithography.
    Vanderpoorten O; Peter Q; Challa PK; Keyser UF; Baumberg J; Kaminski CF; Knowles TPJ
    Microsyst Nanoeng; 2019; 5():40. PubMed ID: 31636930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a Microfluidic Cell Culture Device Using Photolithographic and Soft Lithographic Techniques.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():227-233. PubMed ID: 31124120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography.
    Janssen XJ; Jonsson MP; Plesa C; Soni GV; Dekker C; Dekker NH
    Nanotechnology; 2012 Nov; 23(47):475302. PubMed ID: 23103750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Micro-Optics Elements with Arbitrary Surface Profiles Based on One-Step Maskless Grayscale Lithography.
    Deng Q; Yang Y; Gao H; Zhou Y; He Y; Hu S
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-optical elements fabricated by metal-transparent-metallic-oxides grayscale photomasks.
    Zhang J; Guo C; Wang Y; Miao J; Tian Y; Liu Q
    Appl Opt; 2012 Sep; 51(27):6606-11. PubMed ID: 23033031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.