These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24976950)

  • 21. A low-cost low-maintenance ultraviolet lithography light source based on light-emitting diodes.
    Erickstad M; Gutierrez E; Groisman A
    Lab Chip; 2015 Jan; 15(1):57-61. PubMed ID: 25322205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-wavelength volumetric stereolithography of multilevel microfluidic devices.
    Smith KA; Habibi S; de Beer MP; Pritchard ZD; Burns MA
    Biomicrofluidics; 2022 Jul; 16(4):044106. PubMed ID: 35935121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Fabrication for Microfluidics by Conventional Techniques and Equipment Used in Mass Production.
    Naito T; Nakamura M; Kaji N; Kubo T; Baba Y; Otsuka K
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maskless photolithography using UV LEDs.
    Guijt RM; Breadmore MC
    Lab Chip; 2008 Aug; 8(8):1402-4. PubMed ID: 18651086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nano-Patterns of Photoresist Fabricated by Ultraviolet Lithography Technology.
    Cheng E; Tang S; Li C; Zou H; Wei Q
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2508-2513. PubMed ID: 31492269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography.
    Kumaresan Y; Rammohan A; Dwivedi PK; Sharma A
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7094-100. PubMed ID: 23882998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programmable chemical gradient patterns by soft grayscale lithography.
    Bowen AM; Ritchey JA; Moore JS; Nuzzo RG
    Small; 2011 Dec; 7(23):3350-62. PubMed ID: 21997925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D-glass molds for facile production of complex droplet microfluidic chips.
    Tovar M; Weber T; Hengoju S; Lovera A; Munser AS; Shvydkiv O; Roth M
    Biomicrofluidics; 2018 Mar; 12(2):024115. PubMed ID: 29657658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Printed circuit technology for fabrication of plastic-based microfluidic devices.
    Sudarsan AP; Ugaz VM
    Anal Chem; 2004 Jun; 76(11):3229-35. PubMed ID: 15167806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid and inexpensive method for the simple fabrication of PDMS-based electrochemical sensors for detection in microfluidic devices.
    da Silva ENT; Ferreira VS; Lucca BG
    Electrophoresis; 2019 May; 40(9):1322-1330. PubMed ID: 30657598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chalcogenide phase-change thin films used as grayscale photolithography materials.
    Wang R; Wei J; Fan Y
    Opt Express; 2014 Mar; 22(5):4973-84. PubMed ID: 24663836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Customizable and Low-Cost Ultraviolet Exposure System for Photolithography.
    Reynolds DE; Lewallen O; Galanis G; Ko J
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photopatterning with a printed transparency mask and a protein-friendly photoresist.
    Kang J; Choi JC; Kim M; Jung HR; Doh J
    Methods Cell Biol; 2014; 119():55-72. PubMed ID: 24439279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maskless projection lithography for the fast and flexible generation of grayscale protein patterns.
    Waldbaur A; Waterkotte B; Schmitz K; Rapp BE
    Small; 2012 May; 8(10):1570-8. PubMed ID: 22411542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of 3D Controlled in vitro Microenvironments.
    Ozdil B; Onal S; Oruc T; Pesen Okvur D
    MethodsX; 2014; 1():60-6. PubMed ID: 26150936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.