These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24976950)

  • 41. PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters.
    Li CW; Cheung CN; Yang J; Tzang CH; Yang M
    Analyst; 2003 Sep; 128(9):1137-42. PubMed ID: 14529020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simple, rapid and, cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) as photoresist master.
    Lobo-Júnior EO; Gabriel EF; Dos Santos RA; de Souza FR; Lopes WD; Lima RS; Gobbi AL; Coltro WK
    Electrophoresis; 2017 Jan; 38(2):250-257. PubMed ID: 27377397
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct-Write Laser Grayscale Lithography for Multilayer Lead Zirconate Titanate Thin Films.
    Benoit RR; Jordan DM; Smith GL; Polcawich RG; Bedair SS; Potrepka DM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 May; 65(5):889-894. PubMed ID: 29733291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploiting the oxygen inhibitory effect on UV curing in microfabrication: a modified lithography technique.
    Alvankarian J; Majlis BY
    PLoS One; 2015; 10(3):e0119658. PubMed ID: 25747514
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns.
    Itoga K; Kobayashi J; Yamato M; Kikuchi A; Okano T
    Biomaterials; 2006 May; 27(15):3005-9. PubMed ID: 16455135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.
    Agirregabiria M; Blanco FJ; Berganzo J; Arroyo MT; Fullaondo A; Mayora K; Ruano-López JM
    Lab Chip; 2005 May; 5(5):545-52. PubMed ID: 15856093
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using pattern homogenization of binary grayscale masks to fabricate microfluidic structures with 3D topography.
    Atencia J; Barnes S; Douglas J; Meacham M; Locascio LE
    Lab Chip; 2007 Nov; 7(11):1567-73. PubMed ID: 17960287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing interferences of DUV lithography on SOI substrates for the rapid fabrication of sub-wavelength features.
    Karker O; Bange R; Bano E; Stambouli V
    Nanotechnology; 2021 Mar; 32(23):. PubMed ID: 33545695
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Grayscale photomask fabricated by laser direct writing in metallic nano-films.
    Guo CF; Cao S; Jiang P; Fang Y; Zhang J; Fan Y; Wang Y; Xu W; Zhao Z; Liu Q
    Opt Express; 2009 Oct; 17(22):19981-7. PubMed ID: 19997222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adjustable refractive index modulation for a waveguide with SU-8 photoresist by dual-UV exposure lithography.
    Ong BH; Yuan X; Tjin SC
    Appl Opt; 2006 Nov; 45(31):8036-9. PubMed ID: 17068544
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer.
    Choi JS; Piao Y; Seo TS
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1871-8. PubMed ID: 23670634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid fabrication of on-demand high-resolution optical masks with a CD-DVD pickup unit.
    Cabriales L; Hautefeuille M; Fernández G; Velázquez V; Grether M; López-Moreno E
    Appl Opt; 2014 Mar; 53(9):1802-7. PubMed ID: 24663456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-dimensional closed microfluidic channel fabrication by stepper projection single step lithography: the diabolo effect.
    Larramendy F; Mazenq L; Temple-Boyer P; Nicu L
    Lab Chip; 2012 Jan; 12(2):387-90. PubMed ID: 22069055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scalable synthesis of a biocompatible, transparent and superparamagnetic photoresist for microdevice fabrication.
    Shah PK; Hughes MR; Wang Y; Sims CE; Allbritton NL
    J Micromech Microeng; 2013 Oct; 23(10):. PubMed ID: 24273390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High intensity light emitting diode array as an alternative exposure source for the fabrication of electrophoretic microfluidic devices.
    Breadmore MC; Guijt RM
    J Chromatogr A; 2008 Dec; 1213(1):3-7. PubMed ID: 18930463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of mid-infrared frequency-selective surfaces by soft lithography.
    Paul KE; Zhu C; Love JC; Whitesides GM
    Appl Opt; 2001 Sep; 40(25):4557-61. PubMed ID: 18360497
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Micropatterning Method for Porous Materials Using the Difference of the Glass Transition Temperature between Exposed and Unexposed Areas of a Thick-Photoresist.
    Ueno H; Sato K; Yamada K; Suzuki T
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31906208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.