BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24977189)

  • 1. Interfacial micromechanics in fibrous composites: design, evaluation, and models.
    Lei Z; Li X; Qin F; Qiu W
    ScientificWorldJournal; 2014; 2014():282436. PubMed ID: 24977189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications.
    Holloway JL; Lowman AM; VanLandingham MR; Palmese GR
    Acta Biomater; 2014 Aug; 10(8):3581-9. PubMed ID: 24814880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of carbon nanotube reinforced polymer composites.
    Li C; Chou TW
    J Nanosci Nanotechnol; 2003 Oct; 3(5):423-30. PubMed ID: 14733155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic dry adhesive via cap defects.
    Khaled WB; Sameoto D
    Bioinspir Biomim; 2013 Dec; 8(4):044002. PubMed ID: 24091647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling on debonding dynamics of pressure-sensitive adhesives.
    Yamaguchi T; Morita H; Doi M
    Eur Phys J E Soft Matter; 2006 May; 20(1):7-17. PubMed ID: 16733634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the influence of silicone elastomer properties on wedge-shaped microstructured dry adhesives loaded in shear.
    Simaite A; Temple B; Amin Karimi M; Alizadehyazdi V; Spenko M
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30232245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can a fibrillar interface be stronger and tougher than a non-fibrillar one?
    Tang T; Hui CY; Glassmaker NJ
    J R Soc Interface; 2005 Dec; 2(5):505-16. PubMed ID: 16849209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating gecko-like adhesives for "real world" surfaces.
    King DR; Bartlett MD; Gilman CA; Irschick DJ; Crosby AJ
    Adv Mater; 2014 Jul; 26(25):4345-51. PubMed ID: 24740961
    [No Abstract]   [Full Text] [Related]  

  • 9. Interface effects on mechanical properties of particle-reinforced composites.
    Debnath S; Ranade R; Wunder SL; McCool J; Boberick K; Baran G
    Dent Mater; 2004 Sep; 20(7):677-86. PubMed ID: 15236943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical characterization of nanofiber-reinforced composite adhesives.
    Xu LR; Li L; Lukehart CM; Kuai H
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2546-8. PubMed ID: 17663281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue creep damage at the cement-bone interface: an experimental and a micro-mechanical finite element study.
    Waanders D; Janssen D; Miller MA; Mann KA; Verdonschot N
    J Biomech; 2009 Nov; 42(15):2513-9. PubMed ID: 19682690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc oxide nanowire interphase for enhanced interfacial strength in lightweight polymer fiber composites.
    Ehlert GJ; Sodano HA
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1827-33. PubMed ID: 20355800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.
    Yamadi S; Kobayashi S
    J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties.
    Vilaseca F; Valadez-Gonzalez A; Herrera-Franco PJ; Pèlach MA; López JP; Mutjé P
    Bioresour Technol; 2010 Jan; 101(1):387-95. PubMed ID: 19700312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent protein senses and reports mechanical damage in glass-fiber-reinforced polymer composites.
    Makyła K; Müller C; Lörcher S; Winkler T; Nussbaumer MG; Eder M; Bruns N
    Adv Mater; 2013 May; 25(19):2701-6. PubMed ID: 23423911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. I. Raw material evaluation and measurement of fiber-matrix interfacial adhesion.
    Slivka MA; Chu CC; Adisaputro IA
    J Biomed Mater Res; 1997 Sep; 36(4):469-77. PubMed ID: 9294762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain rate hardening: a hidden but critical mechanism for biological composites?
    Chintapalli RK; Breton S; Dastjerdi AK; Barthelat F
    Acta Biomater; 2014 Dec; 10(12):5064-5073. PubMed ID: 25174668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bending response of cross-ply laminated composite plates with diagonally perturbed localized interfacial degeneration.
    Kam CZ; Kueh AB
    ScientificWorldJournal; 2013; 2013():350890. PubMed ID: 24319360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and fatigue mechanical characterizations of variable diameter fibers reinforced bone cement.
    Zhou Y; Yue W; Li C; Mason JJ
    J Mater Sci Mater Med; 2009 Feb; 20(2):633-41. PubMed ID: 18936882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.
    Janssen D; Mann KA; Verdonschot N
    J Biomech; 2008 Nov; 41(15):3158-63. PubMed ID: 18848699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.