These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 24977352)

  • 1. Explaining the success of Kogelnik's coupled-wave theory by means of perturbation analysis: discussion.
    Schmidt HJ; Imlau M; Voit KM
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jun; 31(6):1158-66. PubMed ID: 24977352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffraction properties of a reflection photorefractive hologram.
    Zhou H; Zhao F; Yu FT
    Appl Opt; 1994 Jul; 33(20):4345-52. PubMed ID: 20935792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material.
    Neipp C; Beléndez A; Gallego S; Ortuño M; Pascual I; Sheridan J
    Opt Express; 2003 Aug; 11(16):1835-43. PubMed ID: 19466066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Kogelnik's two-wave theory to deep, slanted, highly efficient, relief transmission gratings.
    Gerritsen HJ; Thornton DK; Bolton SR
    Appl Opt; 1991 Mar; 30(7):807-14. PubMed ID: 20582064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta value coupled wave theory for nonslanted reflection gratings.
    Neipp C; Francés J; Gallego S; Bleda S; Martínez FJ; Pascual I; Beléndez A
    ScientificWorldJournal; 2014; 2014():513734. PubMed ID: 24723811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced grating formation in a polymer containing azo-carbazole dyes.
    Kawabe Y; Fukuzawa K; Uemura T; Matsuura K; Yoshikawa T; Nishide J; Sasabe H
    Appl Opt; 2012 Sep; 51(27):6653-60. PubMed ID: 23033038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographic Spectroscopy: Wavelength-Dependent Analysis of Photosensitive Materials by Means of Holographic Techniques.
    Voit KM; Imlau M
    Materials (Basel); 2013 Jan; 6(1):334-358. PubMed ID: 28809312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical treatment of the polychromatic spatially multiplexed volume holographic grating.
    Brotherton-Ratcliffe D
    Appl Opt; 2012 Oct; 51(30):7188-99. PubMed ID: 23089771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond pulse shaping by modulating the refractive index modulation of volume holographic grating.
    Yan X; Dai Y; Gao Z; Chen Y; Yang X; Ma G
    Opt Express; 2013 Mar; 21(6):7560-9. PubMed ID: 23546138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrashort laser pulse diffraction by transmitting volume Bragg gratings in photo-thermo-refractive glass.
    Siiman LA; Lumeau J; Canioni L; Glebov LB
    Opt Lett; 2009 Sep; 34(17):2572-4. PubMed ID: 19724493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planar optical waveguides coupled by means of Bragg scattering.
    Bakhturin MP; Chernozatonskii LA; Gramotnev DK
    Appl Opt; 1995 May; 34(15):2692-703. PubMed ID: 21052414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing. Part I: surface relief gratings.
    Cody D; Naydenova I
    J Opt Soc Am A Opt Image Sci Vis; 2017 Dec; 34(12):2110-2119. PubMed ID: 29240084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rigorous coupled wave analysis of acousto-optics with relativistic considerations.
    Xia G; Zheng W; Lei Z; Zhang R
    J Opt Soc Am A Opt Image Sci Vis; 2015 Sep; 32(9):1594-603. PubMed ID: 26367426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing. Part II: volume gratings.
    Cody D; Naydenova I
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jan; 35(1):12-19. PubMed ID: 29328087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulse splitting by modulating the thickness of buffer layer of two-layer volume holographic grating.
    Yan X; Qian M; Gao L; Yang X; Dai Y; Yan X; Ma G
    Opt Express; 2013 Dec; 21(26):31852-61. PubMed ID: 24514781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled-wave analysis of vector holograms: effects of modulation depth of anisotropic phase retardation.
    Sasaki T; Miura K; Hanaizumi O; Emoto A; Ono H
    Appl Opt; 2010 Oct; 49(28):5205-11. PubMed ID: 20885454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rigorous 3-D coupled wave diffraction analysis of multiple superposed gratings in anisotropic media.
    Glytsis EN; Gaylord TK
    Appl Opt; 1989 Jun; 28(12):2401-21. PubMed ID: 20555529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full characterization of holographic reflection gratings recorded on BB640 emulsions.
    Ulibarrena M; Carretero L; Madrigal R; Blaya S; Fimia A
    Appl Opt; 2004 Jul; 43(21):4219-24. PubMed ID: 15291067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off-Bragg analysis of the diffraction efficiency of reflection photorefractive holograms.
    Nonaka K
    Appl Opt; 1998 May; 37(15):3215-21. PubMed ID: 18273272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of beam propagation method and rigorous coupled-wave analysis for single and multiplexed volume gratings.
    Ahmed S; Glytsis EN
    Appl Opt; 1996 Aug; 35(22):4426-35. PubMed ID: 21102857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.