These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 24977369)

  • 1. Aperiodic-Fourier modal method for analysis of body-of-revolution photonic structures.
    Bigourdan F; Hugonin JP; Lalanne P
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jun; 31(6):1303-11. PubMed ID: 24977369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully vectorial modeling of cylindrical microresonators with aperiodic Fourier modal method.
    Li Y; Liu H; Jia H; Bo F; Zhang G; Xu J
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2459-66. PubMed ID: 25401358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures.
    Pisarenco M; Maubach J; Setija I; Mattheij R
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):2423-31. PubMed ID: 21045907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates.
    Bucci D; Martin B; Morand A
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):367-73. PubMed ID: 22472768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic modeling of large subwavelength-patterned highly resonant structures.
    Chaumet PC; Demésy G; Gauthier-Lafaye O; Sentenac A; Popov E; Fehrembach AL
    Opt Lett; 2016 May; 41(10):2358-61. PubMed ID: 27177002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier finite element modeling of light emission in waveguides: 2.5-dimensional FEM approach.
    Ou Y; Pardo D; Chen Y
    Opt Express; 2015 Nov; 23(23):30259-69. PubMed ID: 26698506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition.
    Park JB; Lee IM; Lee SY; Kim K; Choi D; Song EY; Lee B
    Opt Express; 2013 Jul; 21(13):15205-12. PubMed ID: 23842306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near- to far-field transformation in the aperiodic Fourier modal method.
    Rook R; Pisarenco M; Setija ID
    Appl Opt; 2013 Oct; 52(28):6962-8. PubMed ID: 24085211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of aperiodic Fourier modal method for calculating complex-frequency eigenmodes of long-period photonic crystal slabs.
    Bykov DA; Bezus EA; Doskolovich LL
    Opt Express; 2017 Oct; 25(22):27298-27309. PubMed ID: 29092206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas.
    Coenen T; Vesseur EJ; Polman A
    ACS Nano; 2012 Feb; 6(2):1742-50. PubMed ID: 22230686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional fluorescence emission by individual V-antennas explained by mode expansion.
    Vercruysse D; Zheng X; Sonnefraud Y; Verellen N; Di Martino G; Lagae L; Vandenbosch GA; Moshchalkov VV; Maier SA; Van Dorpe P
    ACS Nano; 2014 Aug; 8(8):8232-41. PubMed ID: 25033422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-chirped subwavelength nanoantennas.
    Yaacobi A; Watts MR
    Opt Lett; 2012 Dec; 37(23):4979-81. PubMed ID: 23202110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties.
    Wissert MD; Schell AW; Ilin KS; Siegel M; Eisler HJ
    Nanotechnology; 2009 Oct; 20(42):425203. PubMed ID: 19779233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-wavelength plasmonic nanoantennas.
    Boriskina SV; Dal Negro L
    Opt Lett; 2010 Feb; 35(4):538-40. PubMed ID: 20160810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics.
    Ghadarghadr S; Hao Z; Mosallaei H
    Opt Express; 2009 Oct; 17(21):18556-70. PubMed ID: 20372586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities.
    Andonegui I; Garcia-Adeva AJ
    Opt Express; 2013 Feb; 21(4):4072-92. PubMed ID: 23481942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative modal analysis of optical power flow and energy loss in photonic structures with a dipole emission source.
    Choi S; Baek S; Im D; Kahng HK; Kim H
    Opt Express; 2014 Jul; 22(15):18499-512. PubMed ID: 25089469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unidirectional broadband radiation of honeycomb plasmonic antenna array with broken symmetry.
    Tok RU; Ow-Yang C; Sendur K
    Opt Express; 2011 Nov; 19(23):22731-42. PubMed ID: 22109154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional study of planar optical antennas made of split-ring architecture outperforming dipole antennas for increased field localization.
    Kilic VT; Erturk VB; Demir HV
    Opt Lett; 2012 Jan; 37(2):139-41. PubMed ID: 22854446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinate transformation method for modeling three-dimensional photonic structures with curved boundaries.
    Liu H
    Opt Express; 2021 Jan; 29(2):1516-1531. PubMed ID: 33726365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.