These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24977505)

  • 1. Photoelastic coupling in gallium arsenide optomechanical disk resonators.
    Baker C; Hease W; Nguyen DT; Andronico A; Ducci S; Leo G; Favero I
    Opt Express; 2014 Jun; 22(12):14072-86. PubMed ID: 24977505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optomechanical interactions in two-dimensional Si and GaAs phoXonic cavities.
    El-Jallal S; Oudich M; Pennec Y; Djafari-Rouhani B; Makhoute A; Rolland Q; Dupont S; Gazalet J
    J Phys Condens Matter; 2014 Jan; 26(1):015005. PubMed ID: 24275077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High frequency GaAs nano-optomechanical disk resonator.
    Ding L; Baker C; Senellart P; Lemaitre A; Ducci S; Leo G; Favero I
    Phys Rev Lett; 2010 Dec; 105(26):263903. PubMed ID: 21231665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-Optomechanical Modulation Instability in a Semiconductor Resonator.
    Allain PE; Guha B; Baker C; Parrain D; Lemaître A; Leo G; Favero I
    Phys Rev Lett; 2021 Jun; 126(24):243901. PubMed ID: 34213944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators.
    Lanzillotti-Kimura ND; Fainstein A; Jusserand B
    Ultrasonics; 2015 Feb; 56():80-9. PubMed ID: 24962289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.
    Hamoumi M; Allain PE; Hease W; Gil-Santos E; Morgenroth L; Gérard B; Lemaître A; Leo G; Favero I
    Phys Rev Lett; 2018 Jun; 120(22):223601. PubMed ID: 29906180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frequency optomechanical disk resonators in III-V ternary semiconductors.
    Guha B; Mariani S; Lemaître A; Combrié S; Leo G; Favero I
    Opt Express; 2017 Oct; 25(20):24639-24649. PubMed ID: 29041409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range.
    Lamberti FR; Yao Q; Lanco L; Nguyen DT; Esmann M; Fainstein A; Sesin P; Anguiano S; Villafañe V; Bruchhausen A; Senellart P; Favero I; Lanzillotti-Kimura ND
    Opt Express; 2017 Oct; 25(20):24437-24447. PubMed ID: 29041388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces.
    Rakich PT; Davids P; Wang Z
    Opt Express; 2010 Jul; 18(14):14439-53. PubMed ID: 20639929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of optical losses in gallium arsenide disk whispering gallery resonators.
    Parrain D; Baker C; Wang G; Guha B; Santos EG; Lemaitre A; Senellart P; Leo G; Ducci S; Favero I
    Opt Express; 2015 Jul; 23(15):19656-72. PubMed ID: 26367623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration amplification, damping, and self-oscillations in micromechanical resonators induced by optomechanical coupling through carrier excitation.
    Okamoto H; Ito D; Onomitsu K; Sanada H; Gotoh H; Sogawa T; Yamaguchi H
    Phys Rev Lett; 2011 Jan; 106(3):036801. PubMed ID: 21405286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning of whispering gallery modes of spherical resonators using an external electric field.
    Ioppolo T; Ayaz U; Otügen MV
    Opt Express; 2009 Sep; 17(19):16465-79. PubMed ID: 19770862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic actuation of silicon optomechanical resonators.
    Sridaran S; Bhave SA
    Opt Express; 2011 May; 19(10):9020-6. PubMed ID: 21643155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals.
    Eichenfield M; Chan J; Safavi-Naeini AH; Vahala KJ; Painter O
    Opt Express; 2009 Oct; 17(22):20078-98. PubMed ID: 19997232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient anchor loss suppression in coupled near-field optomechanical resonators.
    Luiz GO; Benevides RS; Santos FGS; Espinel YAV; Mayer Alegre TP; Wiederhecker GS
    Opt Express; 2017 Dec; 25(25):31347-31361. PubMed ID: 29245810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Optical and Mechanical Sensing Based on Optomechanical Resonators.
    Sentre-Arribas E; Aparicio-Millán A; Lemaître A; Favero I; Tamayo J; Calleja M; Gil-Santos E
    ACS Sens; 2024 Jan; 9(1):371-378. PubMed ID: 38156765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet optomechanical crystal cavities with ultrasmall modal mass and high optomechanical coupling rate.
    Zhou W; Yu Z; Ma J; Zhu B; Tsang HK; Sun X
    Sci Rep; 2016 Nov; 6():37134. PubMed ID: 27892523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Control of the Coupling between Dark and Bright Excitons with Vibrational Strain.
    Ohta R; Okamoto H; Tawara T; Gotoh H; Yamaguchi H
    Phys Rev Lett; 2018 Jun; 120(26):267401. PubMed ID: 30004772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersive optomechanics of supercavity modes in high-index disks.
    Mercadé L; Barreda Á; Martínez A
    Opt Lett; 2020 Sep; 45(18):5238-5241. PubMed ID: 32932500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong Optomechanical Coupling in Nanobeam Cavities based on Hetero Optomechanical Crystals.
    Huang Z; Cui K; Li Y; Feng X; Liu F; Zhang W; Huang Y
    Sci Rep; 2015 Nov; 5():15964. PubMed ID: 26530128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.