These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 2497773)
21. Chemical modification of Glu-953 of the alpha chain of Na+,K(+)-ATPase associated with inactivation of cation occlusion. Goldshleger R; Tal DM; Moorman J; Stein WD; Karlish SJ Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6911-5. PubMed ID: 1353883 [TBL] [Abstract][Full Text] [Related]
22. Photoinactivation of the bovine heart mitochondrial F1-ATPase by [14C]dequalinium cross-links phenylalanine-403 or phenylalanine-406 of an alpha subunit to a site or sites contained within residues 440-459 of a beta subunit. Zhuo S; Paik SR; Register JA; Allison WS Biochemistry; 1993 Mar; 32(9):2219-27. PubMed ID: 8443163 [TBL] [Abstract][Full Text] [Related]
23. Carbodiimides as probes for protein kinase structure and function. Buechler JA; Toner-Webb JA; Taylor SS Methods Enzymol; 1991; 200():487-500. PubMed ID: 1956333 [No Abstract] [Full Text] [Related]
24. Inhibition of the adenosinetriphosphatase activity of Escherichia coli F1 by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide is due to modification of several carboxyls in the beta subunit. Lötscher HR; deJong C; Capaldi RA Biochemistry; 1984 Aug; 23(18):4134-40. PubMed ID: 6237683 [TBL] [Abstract][Full Text] [Related]
25. Subunit interaction sites between the regulatory and catalytic subunits of cAMP-dependent protein kinase. Heterobifunctional cross-linking reagents lead to photodependent and photoindependent cross-linking. First EA; Taylor SS J Biol Chem; 1988 Apr; 263(11):5170-5. PubMed ID: 2833497 [TBL] [Abstract][Full Text] [Related]
26. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Penefsky HS Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1589-93. PubMed ID: 2858849 [TBL] [Abstract][Full Text] [Related]
27. Nucleotide-dependent and dicyclohexylcarbodiimide-sensitive conformational changes in the epsilon subunit of Escherichia coli ATP synthase. Mendel-Hartvig J; Capaldi RA Biochemistry; 1991 Nov; 30(45):10987-91. PubMed ID: 1834172 [TBL] [Abstract][Full Text] [Related]
28. Effects of N,N'-dicyclohexylcarbodiimide and N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline on hydride ion transfer and proton translocation activities of mitochondrial nicotinamidenucleotide transhydrogenase. Phelps DC; Hatefi Y Biochemistry; 1984 Dec; 23(26):6340-4. PubMed ID: 6099137 [TBL] [Abstract][Full Text] [Related]
29. Inactivation of rice bran thiamine-binding protein by N,N'-dicyclohexylcarbodiimide. Nishimura H; Sempuku K; Nosaka K; Iwashima A J Biochem; 1984 Oct; 96(4):1289-95. PubMed ID: 6520124 [TBL] [Abstract][Full Text] [Related]
30. Probing the peptide binding site of the cAMP-dependent protein kinase by using a peptide-based photoaffinity label. Miller WT; Kaiser ET Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5429-33. PubMed ID: 3399499 [TBL] [Abstract][Full Text] [Related]
31. cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Madhusudan ; Trafny EA; Xuong NH; Adams JA; Ten Eyck LF; Taylor SS; Sowadski JM Protein Sci; 1994 Feb; 3(2):176-87. PubMed ID: 8003955 [TBL] [Abstract][Full Text] [Related]
32. Structural asymmetry of the F1 of Escherichia coli as indicated by reaction with dicyclohexylcarbodiimide. Lötscher HR; Capaldi RA Biochem Biophys Res Commun; 1984 May; 121(1):331-9. PubMed ID: 6233975 [TBL] [Abstract][Full Text] [Related]
33. Chemical cross-linking of cyclic AMP-dependent protein kinase and its dissimilar subunits. Charlton JP; Huang CH; Huang LC Biochem J; 1983 Mar; 209(3):581-6. PubMed ID: 6307258 [TBL] [Abstract][Full Text] [Related]
34. Structural basis for the low affinities of yeast cAMP-dependent and mammalian cGMP-dependent protein kinases for protein kinase inhibitor peptides. Glass DB; Feller MJ; Levin LR; Walsh DA Biochemistry; 1992 Feb; 31(6):1728-34. PubMed ID: 1310617 [TBL] [Abstract][Full Text] [Related]
35. Specific dicyclohexylcarbodiimide inhibition of the E-P + H2O equilibrium E + Pi reaction and ATP equilibrium Pi exchange in sarcoplasmic reticulum adenosinetriphosphatase. Scofano HM; Barrabin H; Lewis D; Inesi G Biochemistry; 1985 Feb; 24(4):1025-9. PubMed ID: 3158344 [TBL] [Abstract][Full Text] [Related]
36. Covalent modification of both cAMP binding sites in cAMP-dependent protein kinase I by 8-azidoadenosine 3',5'-monophosphate. Bubis J; Taylor SS Biochemistry; 1985 Apr; 24(9):2163-70. PubMed ID: 2986689 [TBL] [Abstract][Full Text] [Related]
37. Purification of the carbodiimide-reactive protein component of the ATP energy-transducing system of Escherichia coli. Fillingame RH J Biol Chem; 1976 Nov; 251(21):6630-7. PubMed ID: 789371 [TBL] [Abstract][Full Text] [Related]
38. Cysteinyl peptides labeled by dibromobutanedione in reaction with rabbit muscle pyruvate kinase. Vollmer SH; Colman RF Protein Sci; 1992 May; 1(5):678-87. PubMed ID: 1304366 [TBL] [Abstract][Full Text] [Related]
39. Identification of carboxylic acid residues in glucoamylase G2 from Aspergillus niger that participate in catalysis and substrate binding. Svensson B; Clarke AJ; Svendsen I; Møller H Eur J Biochem; 1990 Feb; 188(1):29-38. PubMed ID: 2108020 [TBL] [Abstract][Full Text] [Related]
40. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). Bossemeyer D; Engh RA; Kinzel V; Ponstingl H; Huber R EMBO J; 1993 Mar; 12(3):849-59. PubMed ID: 8384554 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]