These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 24977850)

  • 1. Second-order surface-plasmon assisted responsivity enhancement in germanium nano-photodetectors with bull's eye antennas.
    Ren FF; Xu WZ; Ye J; Ang KW; Lu H; Zhang R; Yu M; Lo GQ; Tan HH; Jagadish C
    Opt Express; 2014 Jun; 22(13):15949-56. PubMed ID: 24977850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.
    Ren FF; Ang KW; Ye J; Yu M; Lo GQ; Kwong DL
    Nano Lett; 2011 Mar; 11(3):1289-93. PubMed ID: 21306111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-independent split bull's eye antennas for infrared nano-photodetectors.
    Yang M; Ren FF; Pu L; Xiao L; Sheng Y; Wang J; Lu H; Zheng Y; Shi Y
    Sci Rep; 2016 Dec; 6():39106. PubMed ID: 27991590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced fluorescence microscopy with the Bull's eye-plasmonic chip.
    Tawa K; Izumi S; Sasakawa C; Hosokawa C; Toma M
    Opt Express; 2017 May; 25(9):10622-10631. PubMed ID: 28468434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of Radiative Damping and Enhancement of Second Harmonic Generation in Bull's Eye Nanoresonators.
    Yi JM; Smirnov V; Piao X; Hong J; Kollmann H; Silies M; Wang W; Groß P; Vogelgesang R; Park N; Lienau C
    ACS Nano; 2016 Jan; 10(1):475-83. PubMed ID: 26635078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for extraordinary optical transmission through bull's eye structures.
    Carretero-Palacios S; Mahboub O; Garcia-Vidal FJ; Martin-Moreno L; Rodrigo SG; Genet C; Ebbesen TW
    Opt Express; 2011 May; 19(11):10429-42. PubMed ID: 21643298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong polarization dependence in the optical transmission through a bull's eye with an elliptical sub-wavelength aperture.
    Pournoury M; Arabi HE; Oh K
    Opt Express; 2012 Nov; 20(24):26798-805. PubMed ID: 23187534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoantenna effect dependent on the center structure of Bull's eye-type plasmonic chip.
    Nagasue T; Shinohara T; Hasegawa S; Imura K; Tawa K
    Opt Express; 2022 Feb; 30(5):7526-7538. PubMed ID: 35299513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D nanopillar optical antenna photodetectors.
    Senanayake P; Hung CH; Shapiro J; Scofield A; Lin A; Williams BS; Huffaker DL
    Opt Express; 2012 Nov; 20(23):25489-96. PubMed ID: 23187366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grating and hole-array enhanced germanium lateral p-i-n photodetectors on an insulator platform.
    Zhou H; Chen Q; Wu S; Zhang L; Guo X; Son B; Tan CS
    Opt Express; 2022 Feb; 30(4):4706-4717. PubMed ID: 35209446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes.
    Liu L; Luo Y; Zhao Z; Zhang W; Gao G; Zeng B; Wang C; Luo X
    Sci Rep; 2016 Jul; 6():30450. PubMed ID: 27466010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon-enhanced nanopillar photodetectors.
    Senanayake P; Hung CH; Shapiro J; Lin A; Liang B; Williams BS; Huffaker DL
    Nano Lett; 2011 Dec; 11(12):5279-83. PubMed ID: 22077757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high throughput supra-wavelength plasmonic bull's eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet.
    Arabi HE; Joe HE; Nazari T; Min BK; Oh K
    Opt Express; 2013 Nov; 21(23):28083-94. PubMed ID: 24514322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon enhanced GeSn photodetectors operating at 2 µm.
    Zhou H; Zhang L; Tong J; Wu S; Son B; Chen Q; Zhang DH; Tan CS
    Opt Express; 2021 Mar; 29(6):8498-8509. PubMed ID: 33820296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guided mode resonance enabled ultra-compact Germanium photodetector for 1.55 μm detection.
    Zhu AY; Zhu S; Lo GQ
    Opt Express; 2014 Feb; 22(3):2247-58. PubMed ID: 24663517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale plasmonically enhanced photodetector based on a gold nanoring.
    Safaee SM; PilAli A; Karami MA
    Appl Opt; 2017 Jan; 56(3):476-481. PubMed ID: 28157901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving CMOS-compatible Germanium photodetectors.
    Li G; Luo Y; Zheng X; Masini G; Mekis A; Sahni S; Thacker H; Yao J; Shubin I; Raj K; Cunningham JE; Krishnamoorthy AV
    Opt Express; 2012 Nov; 20(24):26345-50. PubMed ID: 23187489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse design of a bull's eye structure for oblique incidence and wider angular transmission efficiency.
    Yamada A; Terakawa M
    Appl Opt; 2015 Apr; 54(11):3517-22. PubMed ID: 25967346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light emission rate enhancement from InP MQW by plasmon nano-antenna arrays.
    Arbel D; Berkovitch N; Nevet A; Peer A; Cohen S; Ritter D; Orenstein M
    Opt Express; 2011 May; 19(10):9807-13. PubMed ID: 21643237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of bull's eye structures for transmission enhancement.
    Mahboub O; Palacios SC; Genet C; Garcia-Vidal FJ; Rodrigo SG; Martin-Moreno L; Ebbesen TW
    Opt Express; 2010 May; 18(11):11292-9. PubMed ID: 20588990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.