These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 24977872)

  • 1. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles.
    Arzola AV; Jákl P; Chvátal L; Zemánek P
    Opt Express; 2014 Jun; 22(13):16207-21. PubMed ID: 24977872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium orientations of oblate spheroidal particles in single tightly focused Gaussian beams.
    Cao Y; Song W; Ding W; Sun F; Zhu T
    Opt Express; 2014 Jul; 22(15):18113-8. PubMed ID: 25089430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping of spheroidal particles in Gaussian beams.
    Simpson SH; Hanna S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):430-43. PubMed ID: 17206258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations.
    Li M; Yan S; Yao B; Liang Y; Han G; Zhang P
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):1341-7. PubMed ID: 27409691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam.
    Zhao Y; Shapiro D; McGloin D; Chiu DT; Marchesini S
    Opt Express; 2009 Dec; 17(25):23316-22. PubMed ID: 20052258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow.
    Angelsky OV; Bekshaev AY; Maksimyak PP; Maksimyak AP; Mokhun II; Hanson SG; Zenkova CY; Tyurin AV
    Opt Express; 2012 May; 20(10):11351-6. PubMed ID: 22565755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical torque on microscopic objects.
    Parkin S; Knöner G; Singer W; Nieminen TA; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():525-61. PubMed ID: 17586271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical forces and torques in nonuniform beams of light.
    Ruffner DB; Grier DG
    Phys Rev Lett; 2012 Apr; 108(17):173602. PubMed ID: 22680864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of metallic nanoparticle with evanescent vortex Bessel beam.
    Rui G; Wang X; Cui Y
    Opt Express; 2015 Oct; 23(20):25707-16. PubMed ID: 26480086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear accelerated orbiting motions of optical trapped particles through two-photon absorption.
    Zhang X; Rui G; He J; Cui Y; Gu B
    Opt Lett; 2021 Jan; 46(1):110-113. PubMed ID: 33362028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap.
    Brzobohatý O; Arzola AV; Šiler M; Chvátal L; Jákl P; Simpson S; Zemánek P
    Opt Express; 2015 Mar; 23(6):7273-87. PubMed ID: 25837071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a simple technique for controllable revolution of light-absorbing particles in air.
    Porfirev AP; Dubman AB; Porfiriev DP
    Opt Lett; 2020 Mar; 45(6):1475-1478. PubMed ID: 32163995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation of optically trapped nonspherical birefringent particles.
    Singer W; Nieminen TA; Gibson UJ; Heckenberg NR; Rubinsztein-Dunlop H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021911. PubMed ID: 16605366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array.
    Eriksen RL; Rodrigo PJ; Daria VR; Glückstad J
    Appl Opt; 2003 Sep; 42(25):5107-11. PubMed ID: 12962388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interparticle-Interaction-Mediated Anomalous Acceleration of Nanoparticles under Light-Field with Coupled Orbital and Spin Angular Momentum.
    Tamura M; Omatsu T; Tokonami S; Iida T
    Nano Lett; 2019 Aug; 19(8):4873-4878. PubMed ID: 31272154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin Hall Effect in the Paraxial Light Beams with Multiple Polarization Singularities.
    Kovalev AA; Kotlyar VV; Stafeev SS
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orbital angular momentum density characteristics of tightly focused polarized Laguerre-Gaussian beam.
    Zhao Y; Yao Y; Xu X; Xu K; Yang Y; Tian J
    Appl Opt; 2020 Aug; 59(24):7396-7407. PubMed ID: 32902508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically driven oscillations of ellipsoidal particles. Part I: experimental observations.
    Mihiretie BM; Snabre P; Loudet JC; Pouligny B
    Eur Phys J E Soft Matter; 2014 Dec; 37(12):124. PubMed ID: 25577402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.