These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2497792)

  • 21. Interaction of diphtheria toxin fragments A, B and protein crm 45 with liposomes.
    Boquet P
    Eur J Biochem; 1979 Oct; 100(2):483-9. PubMed ID: 510294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Secondary structure of anthrax lethal toxin proteins and their interaction with large unilamellar vesicles: a fourier-transform infrared spectroscopy approach.
    Wang XM; Mock M; Ruysschaert JM; Cabiaux V
    Biochemistry; 1996 Nov; 35(47):14939-46. PubMed ID: 8942659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes.
    Kagan BL; Finkelstein A; Colombini M
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4950-4. PubMed ID: 6272284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase-lifetime spectrophotometry of deoxycholate-purified bacteriorhodopsin reconstituted into asolectin vesicles.
    Krupinski J; Hammes GG
    Biochemistry; 1985 Nov; 24(24):6963-72. PubMed ID: 4074733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attenuated total reflectance Fourier transform infrared studies of the interaction of melittin, two fragments of melittin, and delta-hemolysin with phosphatidylcholines.
    Brauner JW; Mendelsohn R; Prendergast FG
    Biochemistry; 1987 Dec; 26(25):8151-8. PubMed ID: 3442649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of salts on conformational change of basic amphipathic peptides from beta-structure to alpha-helix in the presence of phospholipid liposomes and their channel-forming ability.
    Lee S; Iwata T; Oyagi H; Aoyagi H; Ohno M; Anzai K; Kirino Y; Sugihara G
    Biochim Biophys Acta; 1993 Sep; 1151(1):76-82. PubMed ID: 7689337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation.
    Jiang JX; Abrams FS; London E
    Biochemistry; 1991 Apr; 30(16):3857-64. PubMed ID: 1850289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phospholipid composition modulates the Na+-Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles.
    Vemuri R; Philipson KD
    Biochim Biophys Acta; 1988 Jan; 937(2):258-68. PubMed ID: 3276350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of adrenocorticotropin-(11-24)-tetradecapeptide with neutral lipid membranes revealed by infrared attenuated total reflection spectroscopy.
    Gremlich HU; Fringeli UP; Schwyzer R
    Biochemistry; 1984 Apr; 23(8):1808-10. PubMed ID: 6326811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and topology of diphtheria toxin R domain in lipid membranes.
    Quertenmont P; Wolff C; Wattiez R; Vander Borght P; Falmagne P; Ruysschaert JM; Cabiaux V
    Biochemistry; 1999 Jan; 38(2):660-6. PubMed ID: 9888806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of diphtheria toxin with model membranes.
    Chung LA; London E
    Biochemistry; 1988 Feb; 27(4):1245-53. PubMed ID: 3365385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted delivery of diphtheria toxin via immunoliposomes: efficient antitumor activity in the presence of inactivating anti-diphtheria toxin antibodies.
    Vingerhoeds MH; Steerenberg PA; Hendriks JJ; Crommelin DJ; Storm G
    FEBS Lett; 1996 Oct; 395(2-3):245-50. PubMed ID: 8898105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants.
    Malenbaum SE; Collier RJ; London E
    Biochemistry; 1998 Dec; 37(51):17915-22. PubMed ID: 9922159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior.
    Hu VW; Holmes RK
    Biochim Biophys Acta; 1987 Aug; 902(1):24-30. PubMed ID: 3607056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organization of diphtheria toxin T domain in bilayers: a site-directed spin labeling study.
    Oh KJ; Zhan H; Cui C; Hideg K; Collier RJ; Hubbell WL
    Science; 1996 Aug; 273(5276):810-2. PubMed ID: 8670424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translocation of alpha-sarcin across the lipid bilayer of asolectin vesicles.
    Oñaderra M; Mancheño JM; Gasset M; Lacadena J; Schiavo G; Martínez del Pozo A; Gavilanes JG
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):221-5. PubMed ID: 8216220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the equilibrium constant for the binding of ferricytochrome c to phospholipid vesicles and the effect of binding on the reduction rate of cytochrome c.
    Cannon JB; Erman JE
    Biochim Biophys Acta; 1980 Jul; 600(1):19-26. PubMed ID: 6249360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orientation in lipid bilayers of a synthetic peptide representing the C-terminus of the A1 domain of shiga toxin. A polarized ATR-FTIR study.
    Menikh A; Saleh MT; Gariépy J; Boggs JM
    Biochemistry; 1997 Dec; 36(50):15865-72. PubMed ID: 9398319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural requirements for the association of native and partially folded conformations of alpha-lactalbumin with model membranes.
    Bañuelos S; Muga A
    Biochemistry; 1996 Apr; 35(13):3892-8. PubMed ID: 8672419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interaction of the Bax C-terminal domain with negatively charged lipids modifies the secondary structure and changes its way of insertion into membranes.
    Ausili A; Torrecillas A; Martínez-Senac MM; Corbalán-García S; Gómez-Fernández JC
    J Struct Biol; 2008 Oct; 164(1):146-52. PubMed ID: 18672068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.