These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 2497795)
1. Thermodynamics and kinetics of incorporation into a membrane. Schwarz G Biochimie; 1989 Jan; 71(1):3-9. PubMed ID: 2497795 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin. Schwarz G; Stankowski S; Rizzo V Biochim Biophys Acta; 1986 Sep; 861(1):141-51. PubMed ID: 3756150 [TBL] [Abstract][Full Text] [Related]
3. Incorporation kinetics in a membrane, studied with the pore-forming peptide alamethicin. Schwarz G; Gerke H; Rizzo V; Stankowski S Biophys J; 1987 Nov; 52(5):685-92. PubMed ID: 3427183 [TBL] [Abstract][Full Text] [Related]
4. Alamethicin incorporation in lipid bilayers: a thermodynamic study. Rizzo V; Stankowski S; Schwarz G Biochemistry; 1987 May; 26(10):2751-9. PubMed ID: 3606990 [TBL] [Abstract][Full Text] [Related]
5. Voltage-dependent pore activity of the peptide alamethicin correlated with incorporation in the membrane: salt and cholesterol effects. Stankowski S; Schwarz UD; Schwarz G Biochim Biophys Acta; 1988 Jun; 941(1):11-8. PubMed ID: 2453215 [TBL] [Abstract][Full Text] [Related]
6. Molecular aspects of electrical excitation in lipid bilayers and cell membranes. Mueller P Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of antimicrobial peptides into membranes: a combined liquid-state NMR and molecular dynamics study of alamethicin in DMPC/DHPC bicelles. Dittmer J; Thøgersen L; Underhaug J; Bertelsen K; Vosegaard T; Pedersen JM; Schiøtt B; Tajkhorshid E; Skrydstrup T; Nielsen NC J Phys Chem B; 2009 May; 113(19):6928-37. PubMed ID: 19368399 [TBL] [Abstract][Full Text] [Related]
8. Structural and membrane modifying porperties of suzukacillin, a peptide antibiotic related to alamethicin. Part B. Pore formation in black lipid films. Boheim G; Janko K; Leibfritz D; Ooka T; König WA; Jung G Biochim Biophys Acta; 1976 Apr; 433(1):182-99. PubMed ID: 1260058 [TBL] [Abstract][Full Text] [Related]
9. The effect of lanthanum on alamethicin channels in black lipid bilayers. Gögelein H; De Smedt H; Van Driessche W; Borghgraef R Biochim Biophys Acta; 1981 Jan; 640(1):185-94. PubMed ID: 6260169 [TBL] [Abstract][Full Text] [Related]
10. Voltage-dependent conductance induced by alamethicin-phospholipid conjugates in lipid bilayers. Latorre R; Miller CG; Quay S Biophys J; 1981 Dec; 36(3):803-9. PubMed ID: 7326333 [TBL] [Abstract][Full Text] [Related]
11. Calcium-induced inactivation of alamethicin in asymmetric lipid bilayers. Hall JE; Cahalan MD J Gen Physiol; 1982 Mar; 79(3):387-409. PubMed ID: 7077290 [TBL] [Abstract][Full Text] [Related]
12. Lipid dependence of peptide-membrane interactions. Bilayer affinity and aggregation of the peptide alamethicin. Stankowski S; Schwarz G FEBS Lett; 1989 Jul; 250(2):556-60. PubMed ID: 2753150 [TBL] [Abstract][Full Text] [Related]
13. Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects. Kessel A; Cafiso DS; Ben-Tal N Biophys J; 2000 Feb; 78(2):571-83. PubMed ID: 10653772 [TBL] [Abstract][Full Text] [Related]
14. Distribution and diffusion of alamethicin in a lecithin/water model membrane system. Fringeli UP J Membr Biol; 1980 Jun; 54(3):203-12. PubMed ID: 6893058 [TBL] [Abstract][Full Text] [Related]
15. Alamethicin-induced conductances in lipid bilayers: I. Data analysis and simple steady-state model. Fleischmann M; Gabrielli C; Labram MT; McMullen AI; Wilmshurst TH J Membr Biol; 1980 Jun; 55(1):9-27. PubMed ID: 7401170 [TBL] [Abstract][Full Text] [Related]
16. Kinetics and stability of alamethicin conducting channels in lipid bilayers. Gordon LG; Haydon DA Biochim Biophys Acta; 1976 Jul; 436(3):541-56. PubMed ID: 952910 [TBL] [Abstract][Full Text] [Related]
17. Single-molecule investigation of the influence played by lipid rafts on ion transport and dynamic features of the pore-forming alamethicin oligomer. Chiriac R; Luchian T J Membr Biol; 2008; 224(1-3):45-54. PubMed ID: 18850058 [TBL] [Abstract][Full Text] [Related]
18. Pore formation in lipid membranes by alamethicin. Fringeli UP; Fringeli M Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3852-6. PubMed ID: 291045 [TBL] [Abstract][Full Text] [Related]
19. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures. Angelova A; Ionov R; Koch MH; Rapp G Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049 [TBL] [Abstract][Full Text] [Related]
20. Energetics of pore formation induced by membrane active peptides. Lee MT; Chen FY; Huang HW Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]