BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24978067)

  • 1. Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes.
    Min JH; Son M; Bae SY; Lee JY; Yun J; Maeng MJ; Kwon DG; Park Y; Shim JI; Ham MH; Lee DS
    Opt Express; 2014 Jun; 22 Suppl 4():A1040-50. PubMed ID: 24978067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GaN-based light-emitting diodes with graphene/indium tin oxide transparent layer.
    Lai WC; Lin CN; Lai YC; Yu P; Chi GC; Chang SJ
    Opt Express; 2014 Mar; 22 Suppl 2():A396-401. PubMed ID: 24922249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characteristics of GaN-based light-emitting diodes with a reduced graphene oxide current-spreading layer.
    Ryu BD; Han M; Han N; Park YJ; Ko KB; Lim TH; Chandramohan S; Cuong TV; Choi CJ; Cho J; Hong CH
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22451-6. PubMed ID: 25411766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode.
    Seo TH; Lee KJ; Park AH; Hong CH; Suh EK; Chae SJ; Lee YH; Cuong TV; Pham VH; Chung JS; Kim EJ; Jeon SR
    Opt Express; 2011 Nov; 19(23):23111-7. PubMed ID: 22109191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes.
    Youn DH; Yu YJ; Choi H; Kim SH; Choi SY; Choi CG
    Nanotechnology; 2013 Feb; 24(7):075202. PubMed ID: 23358524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes.
    Joo K; Jerng SK; Kim YS; Kim B; Moon S; Moon D; Lee GD; Song YK; Chun SH; Yoon E
    Nanotechnology; 2012 Oct; 23(42):425302. PubMed ID: 23036991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of conducting-filament-embedded indium tin oxide electrodes: application to lateral-type gallium nitride light-emitting diodes.
    Kim HD; Kim KH; Kim SJ; Kim TG
    Opt Express; 2015 Nov; 23(22):28775-83. PubMed ID: 26561146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indium Tin Oxide-Free Transparent Conductive Electrode for GaN-Based Ultraviolet Light-Emitting Diodes.
    Kim JY; Jeon JH; Kwon MK
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7945-50. PubMed ID: 25830932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposite Behavior of Multilayer Graphene/ Indium-Tin-Oxide
    Kim TK; Yoon YJ; Oh SK; Cha YJ; Hong IY; Cho MU; Hong CH; Choi HK; Kwak JS
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6106-6111. PubMed ID: 29677751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes.
    Jo G; Choe M; Cho CY; Kim JH; Park W; Lee S; Hong WK; Kim TW; Park SJ; Hong BH; Kahng YH; Lee T
    Nanotechnology; 2010 Apr; 21(17):175201. PubMed ID: 20368676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes.
    Wang L; Cheng Y; Liu Z; Yi X; Zhu H; Wang G
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1176-83. PubMed ID: 26699194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed laser deposition of ITO/AZO transparent contact layers for GaN LED applications.
    Ou SL; Wuu DS; Liu SP; Fu YC; Huang SC; Horng RH
    Opt Express; 2011 Aug; 19(17):16244-51. PubMed ID: 21934987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of an indium-tin-oxide (ITO) direct-Ohmic contact structure on a GaN-based light emitting diode.
    Liu YJ; Huang CC; Chen TY; Hsu CS; Liou JK; Tsai TY; Liu WC
    Opt Express; 2011 Jul; 19(15):14662-70. PubMed ID: 21934828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-patterned dual-layer ITO electrode of high brightness blue light emitting diodes using maskless wet etching.
    Oh S; Su PC; Yoon YJ; Cho S; Oh JH; Seong TY; Kim KK
    Opt Express; 2013 Nov; 21 Suppl 6():A970-6. PubMed ID: 24514938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single layer graphene electrodes for quantum dot-light emitting diodes.
    Yan L; Zhang Y; Zhang X; Zhao J; Wang Y; Zhang T; Jiang Y; Gao W; Yin J; Zhao J; Yu WW
    Nanotechnology; 2015 Mar; 26(13):135201. PubMed ID: 25751419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-extraction enhancement of GaN-based 395  nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode.
    Xu J; Zhang W; Peng M; Dai J; Chen C
    Opt Lett; 2018 Jun; 43(11):2684-2687. PubMed ID: 29856393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P-side-up thin-film AlGaInP-based light emitting diodes with direct ohmic contact of an ITO layer with a GaP window layer.
    Tseng MC; Chen CL; Lai NK; Chen SI; Hsu TC; Peng YR; Horng RH
    Opt Express; 2014 Dec; 22 Suppl 7():A1862-7. PubMed ID: 25607500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation and experimental investigation of GaN-based flip-chip LEDs and top-emitting LEDs.
    Liu X; Zhou S; Gao Y; Hu H; Liu Y; Gui C; Liu S
    Appl Opt; 2017 Dec; 56(34):9502-9509. PubMed ID: 29216064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of interlayer processing conditions on the performance of GaN light-emitting diode with specific NiOx/graphene electrode.
    Chandramohan S; Kang JH; Ryu BD; Yang JH; Kim S; Kim H; Park JB; Kim TY; Cho BJ; Suh EK; Hong CH
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):958-64. PubMed ID: 23305126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement in Light Output of Ultraviolet Light-Emitting Diodes with Patterned Double-Layer ITO by Laser Direct Writing.
    Zhao J; Ding X; Miao J; Hu J; Wan H; Zhou S
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30720748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.